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BLOW-UP BOUNDARY SOLUTIONS FOR

QUASILINEAR ANISOTROPIC

EQUATIONS

Manuel Amzoiu

Abstract

This article refers to the study of the equation ∆p u = m(x)f(u).
Our aim is to find the conditions for f and m in which the equation has
at least a positive solution and in which case the solution is large.

1 Introduction

In this paper we consider the following equation







∆p u = m(x)f(u) in Ω
u ≥ 0 in Ω,

(1)

where ∆pu = div(|∇u|p−2∇u) is the Laplace operator and Ω ∈ RN is a smooth
domain(bounded or unbounded) with a compact boundary. Throughout this
paper we assume that m is a non-negative function with m ∈ C0,α(Ω̄) if Ω
is bounded, and m ∈ C

0,α
loc (Ω) if Ω is unbounded. The non-decreasing non-

linearity f fulfills

(f1) f ∈ C1[0,∞), f ′ ≥ 0, f(0) = 0, f > 0 in (0,∞) and sup
s∈(0,1]

f(s)
1

p−1

s
< ∞,
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(f2)
∫∞

1
[F (t)]−

1

p dt < ∞ where F (t) =
∫ t

0
f(s)ds,

(f3) f(x)
(x+β)p−1 is non-decreasing, for some β ∈ R.

A solution u to the problem (1) is called large (explosive, blow − up) if
u(x) → ∞ as dist(x, ∂Ω) → 0 (when Ω is bounded). In the case of Ω = RN we
call u an entire large (explosive) solution and the condition can be written
u(x) → ∞ as |x| → ∞.

Remark 1.1. The case p = 2 has been intensively studied for different forms
of f . The results of this article extend the work of Cı̂rstea and Radulescu from
[5] where most of the results, especially the uniqueness, are proved using the
linearity of ∆. The case of ∆p raises some problems mainly because it is not
linear. We overcome this problems by using a special technique developed by
Covei in [8].

The paper is organized as follows: in Section 2, we present the main results
as theorems and the proofs of theorems are given in Section 3.

2 The main results

Theorem 2.1. Let Ω be a bounded domain. Assume that f satisfies the con-
ditions (f1), (f2), (f3), m ∈ C0,α(Ω̄) and g : ∂Ω → (0,∞) is a continuous
function. Then the problem















∆p u = m(x)f(u) in Ω
u = g on ∂Ω
u ≥ 0 in Ω

(2)

has a unique positive solution.

Theorem 2.2. Consider Ω to be a bounded domain and m satisfies the next
condition
(m1) for every x0 ∈ Ω with m(x0) = 0, there exists a domain Ω0 which

contain x0 such that Ω0 ⊂ Ω and m > 0 on ∂Ω0.
Then the problem (1) has a positive large solution .

Theorem 2.3. Let’s assume that the problem (1) has at least one solution for
Ω = RN . If m satisfies the modified condition
(m1)’ there exists a sequence of smooth bounded domains (Ωn)n≥1 such that
Ωn ⊂ Ωn+1 , RN =

⋃∞
n=1 Ωn and (m1) holds in Ωn, for every n ≥ 1,

then a maximal solution U of (1) exists.
If m satisfies the additional condition
(m2)

∫∞

0
rΦ(r)dr < ∞ where Φ(r) = max|x|=r m(x),

then U is an entire large solution.
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Theorem 2.4. If the problem (1) has at least a solution for a unbounded
Ω 6= RN and m satisfies (m1)’, then there exists a maximal solution U for
the problem (1). If m satisfies (m2), with Φ(r) = 0 for r ∈ [0, R] and Ω =
RN\B(0, R), then U is a large solution that blows-up at infinity.

3 Proof of results

3.1 Proof of Theorem 2.1

For start it is easy to observe that the function u+(x) = n is a super-solution
for the problem (2), when n is sufficiently large. In order to find a subsolution,
we consider an auxiliary problem:

∆pv = Φ(r), v > 0 in A(r, r) = {x ∈ RN , r < |x| < r}, (1)

where

r = inf{τ > 0; ∂B(0, τ)
⋂

Ω 6= Ø}, r = sup{τ > 0; ∂B(0, τ)
⋂

Ω 6= Ø},

Φ(r) = max
|x|=r

m(x) for any r ∈ [r, r].

The assumptions on f and g imply

g0 = min
∂Ω

g > 0 and lim
zց0

∫ g0

z

dt

f(t)
1

p−1

= ∞.

Using these relations, we prove the existence of a positive number c such that

max
∂Ω

v =

∫ g0

c

dt

f(t)
1

p−1

. (2)

Now we can define u− such that

v(x) =

∫ u−(x)

c

dt

f(t)
1

p−1

, for all x ∈ Ω. (3)

Next we are going to prove that u− is a subsolution. First we observe that

u− ∈ C1,α(Ω) and u− ≥ c in Ω.

The way that u− is defined let us say that

∇v =
1

f(u−)
1

p−1

· ∇u−.
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It means

∇v|∇v|p−2 =
1

f(u−)
· ∇u−|∇u−|

p−2.

Using the formula
div(u~v) = ∇u~v + udiv~v

we find that

∆pv = div(∇v|∇v|p−2) = div(
1

f(u−)
· ∇u−|∇u−|

p−2) =

−
f ′(u−)

f2(u−)
· |∇u−|

2|∇u−|
p−2 +

1

f(u−)
·∆pu−

and the relation can be written

m(x) ≤ ∆pv ≤
1

f(u−)
·∆pu−.

This implies that ∆pu− ≥ m(x)f(u−) and using u−(x) ≤ g(x) it follows that
u− is subsolution. So far we have proved that the equation (1) has a sub- and
supersolution which imply that the equation has at least a solution. To com-
plete the proof of this theorem we have to show the uniqueness of the solution .

In order to prove its uniqueness, we consider that the equation (1) has
two solutions u and v. It is sufficient to show that u ≤ v or, equivalently,
ln(u(x) + β) ≤ ln(v(x) + β), for any x ∈ Ω. We assume the contrary. So we
have

lim
|x|→∂Ω

(ln(u(x) + β)− ln(v(x) + β)) = 0

and we deduce that

max(ln(u(x) + β)− ln(v(x) + β)) on Ω

exists and is positive. We denote this point x0. At x0 we have

∇(ln(u(x) + β)− ln(v(x) + β)) = 0,

so
1

u(x0) + β
· ∇u(x0) =

1

v(x0) + β
· ∇v(x0),

which implies that

1

(u(x0) + β)p−2
· |∇u(x0)|

p−2 =
1

(v(x0) + β)p−2
· |∇v(x0)|

p−2. (4)



BLOW-UP BOUNDARY SOLUTIONS FOR QUASILINEAR ANISOTROPIC

EQUATIONS 39

The condition (f3) yields to

f(u(x0))

(u(x0) + β)p−1
>

f(v(x0))

(v(x0) + β)p−1
.

We observe 0 ≥ ∆(ln(u(x0) + β)− ln(v(x0) + β)), which yields to

∆(u(x0))

u(x0) + β
≤

∆v(x0)

v(x0) + β
.

And by (4) it follows that

1

(u(x0) + β)p−1
· |∇u(x0)|

p−2∆u(x0) ≤
1

(v(x0) + β)p−1
· |∇v(x0)|

p−2∆v(x0).

(5)
Since

|∇ ln(u(x0) + β)|p−2 =
1

(u(x0) + β)p−2
· |∇u(x0)|

p−2,

it results that

∇(|∇ ln(u(x0) + β)|p−2) = − (p− 2)
|∇u(x0)|

p−2(u(x0) + β)p−3

(u(x0) + β)2(p−2)
· ∇u(x0)+

∇(|∇u(x0)|
p−2)

(u(x0) + β)p−2
.

We conclude that

∇(|∇ ln(u(x0) + β)|p−2) · ∇ ln(u(x0) + β) =

− (p− 2)
|∇u(x0)|

p−2|∇u(x0)|
2

(u(x0) + β)p
+

∇(|∇u(x0)|
p−2) · ∇u(x0)

(u(x0) + β)p−1
(6)

and

|∇ ln(u(x0) + β)|p−2 ·∆ln(u(x0) + β) =
|∇u(x0)|

p−2∆u(x0)

(u(x0) + β)p−1
−

|∇u(x0)|
p

(u(x0) + β)p
.

By (4), (5) and (6) we have

0 ≥ ∆p ln(u(x0) + β)−∆p ln(v(x0) + β)

=
∆pu(x0)

(u(x0) + β)p−1
−(p−1)

|∇u(x0)|
p

(u(x0) + β)p
−

∆pv(x0)

(v(x0) + β)p−1
+(p−1)

|∇v(x0)|
p

(v(x0) + β)p

=
∆pu(x0)

(u(x0) + β)p−1
−

∆pv(x0)

(v(x0) + β)p−1
= m(x0)(

f(u(x0))

(u(x0) + β)p−1
−

f(v(x0))

(v(x0) + β)p−1
) > 0

and that is a contradiction. Hence u ≤ v. By symmetry, we also obtain v ≤ u

and the proof of its uniqueness is now complete.
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3.2 Proof of Theorem 2.2

To complete the proof of Theorem 2.2, we need the next auxiliary result

Lemma 3.1. If the conditions (f1) and (f2) are fulfilled, then

∫ ∞

1

1

f(t)
1

p−1

< ∞

Proof. Being a low risk of confusion, we will denote B = B(0, R) for some
fixed R > 0. By Theorem 2.1, we find that the problem















∆p un = f(un) in B

un = n on ∂B

u ≥ 0 in B

(7)

has a unique solution. The fact that f is non-decreasing implies, by the maxi-
mum principle, that un(x) increases with n, when x ∈ B is fix.
The first thing on our agenda is to try to prove that (un) is uniformly bounded

in every compact subdomain of B. In order to achieve that, let K ⊂ B be any
compact set and d := dist(K, ∂B). Then

0 < d ≤ dist(x, ∂B), for any x ∈ K. (8)

By Proposition 1 in [1], there exists a continuous, non-increasing function
µ : R+ → R+ such that

un(x) ≤ µ( dist(x, ∂B)), for any x ∈ K,

and, using (8), the first part of the proof follows. This allows us to define
u(x) := limn→∞ un(x). The next step is to show that u is a large solution to

∆pu = f(u) in B. (9)

To complete this step we make a change of variables, putting u(x) =
u(r), r = |x| and the equation (9) becomes

(p− 1)(u′)p−2u” + (u′)p−1N − 1

r
= f(u).

Multiplying this by rN−1 the equation can be rewritten

(rN−1(u′)p−1)′ = f(u)rN−1. (10)
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Integrating from 0 to r, we obtain

(u′)p−1 = r1−N

∫ r

0

f(u(s))sN−1, 0 < r < R.

Taking into account the fact that f is non-decreasing,

u′ ≤ [r1−Nf(u(r))

∫ r

0

sN−1ds]
1

p−1 = (
r

N
f(u))

1

p−1 , 0 < r < R. (11)

It results that u is a non-decreasing function and, in the same way, that un is
non-decreasing on (0, R). It remains to prove that u(r) → ∞ as r ր R. We
achieve that arguing by contradiction, assuming that there exists C > 0 such
that u(r) < C for all 0 ≤ r < R. Let N1 ≥ 2C be fix. Using the facts that
uN1

is monotone and uN1
(r) → N1 we find r1 ∈ (0, R) such that C ≤ uN1

(r),
for r ∈ [0, R). Hence

C ≤ uN1
(r) ≤ uN1+1(r) ≤ ... ≤ un(r) ≤ ....

Passing to the limit n → ∞, it follows that u(r) > C, which is a contradiction.
Integrating (11) on (0, R) and taking r ր R we obtain

∫ ∞

u(0)

1

f(t)
1

p−1

≤
p− 1

pN
1

p−1

·R
p

p−1 ,

which completes the proof of our lemma.
Proof of theorem 2.2. Using Theorem (2.1), the boundary value problem















∆p vn = m(x)f(vn) in Ω
vn = n on ∂Ω
vn ≥ 0 in Ω

(12)

has a unique positive solution, for any n ≥ 1. We claim that
(a) for all x0 ∈ Ω there exists an open set ϑ ⊂⊂ Ω containing x0 and
M0 = m0(x0) > 0 such that vn ≤ M0 in ϑ, for any n ≥ 1;
(b)limx→∂Ω v(x) = ∞, where v(x) = limn→∞ vn(x).

The first thing to be observed is that the sequence vn is non-decreasing.Using
again the Theorem (2.1), the problem















∆p ζ = ||m||∞f(ζ) in Ω
ζ = 1 on ∂Ω
ζ > 0 in Ω

(13)
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has a unique solution. Then we obtain with the maximum principle

0 < ζ ≤ v1 ≤ v2 ≤ ... ≤ vn ≤ ... in Ω.

We observe that (a) and (b) are sufficient for completing the proof. From
(a) we obtain that the sequence (vn) is uniformly bounded on every compact
subset of Ω. Then, with the latest relation and (b), we prove that v is a
solution.
To prove (a) we distinguish two cases:
Case m(x0) > 0: By the continuity of m, there exists a ball B = B(x0, r) ⊂ Ω
such that

m0 := min
x∈B

m(x) > 0.

Let w be a positive solution to the problem







∆p w = m0f(w) in Ω
w(x) → ∞ as x → ∂Ω.

(14)

By the maximum principle, it follows that vn ≤ w in B. Furthermore, w is
bounded in B(x0,

r
2 ). We denote M0 = supϑ w, where ϑ = B(x0,

r
2 ) and we

obtain (a).
Case m(x0) = 0: The boundedness of Ω and (m1) implies that there exists a
domain ϑ ⊂ Ω, which contains x0 such that m > 0 on ∂ϑ. Then for any x ∈ ∂ϑ

there exists a ball B(x, r) ⊂ Ω and a constant Mx > 0 such that vn ≤ Mx on
B(x, rx

2 ), for any n. But ∂ϑ is compact and it can be covered with a finite

number of balls, B(xi,
rxi

2 ), i = 1, ..., k0. Taking M0 = max(Mx1
, ...,Mxk0

)
and applying the maximum principle we obtain vn ≤ M0 and (a) follows.

We now consider the problem















∆p z = −m(x) in Ω
z = 0 on ∂Ω
z ≥ 0 in Ω

(15)

that has a unique positive solution (by the maximum principle from [8] ). To
prove (b) it is sufficient to show

∫ ∞

v(x)

dt

f(t)
1

p−1

≤ z(x), for any x ∈ Ω. (16)

By Lemma 3.1, the left side of (16) is well defined in Ω.
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For an easier following of the prof of (16), we denote u =
∫∞

vn(x)
f(t)

− 1

p−1 dt

and v = z(x). We want to show that u ≤ v or, equivalently, ln(u(x) + β) ≤
ln(v(x) + β), for any x ∈ Ω. We assume the contrary. So we have

lim
|x|→∂Ω

(ln(u(x) + β)− ln(v(x) + β)) = 0

and we deduce that

max(ln(u(x) + β)− ln(v(x) + β)) on ∂Ω

exists and is positive. Let us denote this point x0. At x0 we have

∇(ln(u(x) + β)− ln(v(x) + β)) = 0,

so
1

u(x0) + β
· ∇u(x0) =

1

v(x0) + β
· ∇v(x0)

which implies

1

(u(x0) + β)p−2
· |∇u(x0)|

p−2 =
1

(v(x0) + β)p−2
· |∇v(x0)|

p−2. (17)

The condition (f3) yields to

f(u(x0))

(u(x0) + β)p−1
>

f(v(x0))

(v(x0) + β)p−1
.

Following the same thinking as in the proof of Theorem 2.1 , and taking into
account that

∆pu = div(∇vn|∇vn|
p−2) = div(−

1

f(vn)
· ∇vn|∇vn|

p−2) =

f ′(vn)

f2(vn)
· |∇vn|

2|∇vn|
p−2 −

1

f(vn)
·∆pvn,

we have

0 ≥ ∆pln(u(x0) + β)−∆pln(v(x0) + β) =

=
∆pu(x0)

(u(x0) + β)p−1
−(p−1)

|∇u(x0)|
p

(u(x0) + β)p
−

∆pv(x0)

(v(x0) + β)p−1
+(p−1)

|∇v(x0)|
p

(v(x0) + β)p
=

=
∆pu(x0)

(u(x0) + β)p−1
−

∆pv(x0)

(v(x0) + β)p−1
=
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=

f ′(vn(x0))
f2(vn(x0))

· |∇vn(x0)|
2|∇vn(x0)|

p−2 − 1
f(vn(x0))

·∆pvn(x0)

(u(x0) + β)p−1
−

∆pz(x0)

(v(x0) + β)p−1
>

>

f ′(vn(x0))
f2(vn(x0))

· |∇vn(x0)|
p − 1

f(vn(x0))
·m(x0)f(vn(x0)

(u(x0) + β)p−1
+

m(x0)

(u(x0) + β)p−1
=

=

f ′(vn(x0))
f2(vn(x0))

· |∇vn(x0)|
p

(u(x0) + β)p−1
> 0

and that is a contradiction. Hence the assumption is false and the proof is
now complete.

3.3 Proof of Theorem 2.3

Now we consider the following boundary value problem















∆p vn = m(x)f(vn) in Ω
vn → ∞ as x → ∂Ω
vn > 0 in Ω

. (18)

Again, using Theorem 2.1, the above problem has a solution. Since Ωn ⊂ Ω
applying the maximum principle we obtain vn ≥ vn+1 in Ωn. Since RN =
⋃∞

n=1 Ωn and Ωn ⊂ Ω it follows that there exists n0 = n0(x0) such that
x0 ∈ Ωn for all n ≥ n0 and x0 ∈ RN . We can define U(x0) = limn→∞ vn(x0).
The regularity of U as in [9] is U ∈ C

1,α
loc (R

N ) and ∆pU = m(x)f(U).
To prove that U is the maximal solution, let u be a arbitrary solution of (1).
By the maximum principle, we obtain vn ≥ u in Ωn, for all n ≥ 1. It follows
that U ≥ u in RN .
We prove now that if m satisfies (m2), then U blows-up at infinity. For that
is sufficient to find w ∈ C2(RN ) such that U ≥ w and w(x) → ∞ as |x| → ∞.

By Theorem 2.1, we obtain that the problem







∆p z = Φ(r), r = |x| < ∞
z(r) → 0 as |x| → ∞

(19)

has a unique positive solution.
We define a function w impliciently by

z(x) =

∫ ∞

w(x)

dt

f(t)
1

p−1

. (20)
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At the beginning of the article the condition imposed to f yields to

lim
tց0

f(t)
1

p−1

t
≤ C for a constant C

which gives us the possibility to choose δ > 0 such that

f(t)
1

p−1

t
< C for all 0 < t < δ.

We obtain
f(t)

1

p−1 < C · t

and
1

f(t)
1

p−1

>
1

C
·
1

t
.

This implies that for every s ∈ (0, δ) we have

∫ δ

s

dt

f(t)
1

p−1

>
1

C

∫ δ

s

dt

t
=

1

C
(ln δ − ln s).

Passing to the limit it follows that limsց0

∫ δ

s
f(t)

− 1

p−1 dt = ∞ and we have
the possibility to define w as in (20).

3.4 Proof of Theorem 2.4

The fact that Ω 6= RN forces us to make some changes in the argument from
theorem 2.3.
Let (Ωn)n≥1 be a sequence of bounded domains given by (m1)’. For some n

let vn be a positive solution of (12). Set U(x) = limn→∞ vn(x). We find that
U is a maximal solution to (2). When Ω = RN \ B(0, R), we suppose that
(m2) is fulfilled with Φ(r) = 0 for r ∈ [0, R]. To prove that U is a maximal
solution is enough to show that a positive function w ∈ C(RN \B(0, R)) with
U ≥ w in RN \ B(0, R) and w(x) → ∞ as |x| → ∞ and as |x| ց R. As in
Theorem 2.3, z is the positive solution to the problem















∆p z = Φ(r) if |x| = r > R

z(x) → 0 as x → ∞
z(x) → 0 as |x| ց R.

(21)

The uniqueness of z follows from the maximum principle.
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