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FIXED POINT RESULTS FOR
©-CONTRACTIONS ON A SET WITH TWO
SEPARATING GAUGE STRUCTURES

Tiinde Petra Petru

Abstract

The purpose of this article is to present some fixed point theorems for
Cirié—type generalized ¢-contractions on a set with two separating gauge
structures. Fixed point theorems and a homotopy result are given in
Section 2. Then, as applications, some existence results for a multivalued
Cauchy problem and a Volterra-type integral inclusion are presented in
Section 3. Our theorems extend and generalize some previous results in

the literature, such as: [1], [3], [7], [10], [11], [13].

1 Introduction

Throughout this paper X will denote a gauge space endowed with a separating

gauge structure P = {p, taca, where A is a directed set (see [8] for definitions).
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A sequence (z,,) of elements in X is said to be Cauchy if for every e > 0
and a € A, there is an N with po(zn, Tptp) < € for all m > N and p € N.
The sequence (z,,) is called convergent if there exists an z¢ € X such that for
every £ > 0 and « € A, there is an N with p,(zg,z,) < ¢ for all n > N.

A gauge space is called sequentially complete if any Cauchy sequence is
convergent. A subset of X is said to be sequentially closed if it contains the

limit of any convergent sequence of its elements.

If P = {pataca and Q = {qs}sep are two separating gauge structures
(A, B are directed sets), then for r = {rg}sep € (0,00)% and 2y € X we will
denote by Ef;(xo, r) the closure of By(xzo,r) in (X, P), where

By(zo,7) = {z € X|qa(z,z9) < rp for all § € B}.

Let P((X,P)) be the set of all nonempty subsets of X regarding to the
separating gauge structure P. We will use the following symbols where is no

place to confusion:

P(X):={Y e P(X)| Y #0}; P,(X) :={Y € P(X)| Y is bounded };

P.(X):={Y € P(X)| Y is closed }.

Let us define the gap functional between Y and Z in the (X,?P) gauge

space

D, : P(X)x P(X) = Ry U{4oo}, Do(Y,Z) =inf{pa(y,2) |y €Y, z€ Z}

(in particular, if o € X then D, (20, Z) := Ds({x0}, Z)) and the (generalized)

Pompeiu-Hausdorff functional

H, : P(X)xP(X) = RiU{+oo}, Hy(Y, Z) = max{supD,(y, Z),supD, (Y, 2)}.

yeyY z€Z
If F: X — P(X) is a multivalued operator, then x € X is called fixed
point for F if and only if z € F(x). The set FizF = {z € X|z € F(z)}
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is called the fixed point set of F. The multivalued operator F' is said to be
closed if GraphF = {(z,y) € X x X| y € F(x)} is closed in X x X.

The aim of this paper is to give some (local and global) fixed point theo-
rems for multivalued operators on a set endowed with two separating gauge
structures. As a consequence we also obtain a homotopy result. Then, as
applications, some existence results for a multivalued Cauchy problem and a
Volterra-type integral inclusion are presented in Section 3. Our theorems ex-
tend and generalize some previous results (in metric spaces as well as in gauge
spaces) given by: R.P. Agarwal, J. Dshalalow, D. O’Regan [1], L.B. Ciri¢ [7],
M. Frigon [10], [11], T. Lazar, D. O’Regan, A. Petrusel [13], R.P. Agarwal, D.
O’Regan, M. Sambandham [3].

2 The main results

Ciri¢ ([7]) proved that if (X, d) is a complete metric space, F : X — P,y(X) is
a multivalued operator and there exists a € [0,1] such that H(F(x), F(y)) <
a- M¥(z,y), for every z,y € X (where M} (z,y) = max{d(z,y), D(z, F(z)),
D(y,F(y)), 3[D(z, F(y))+D(y, F(z))]}). Then FizF # () and for every z € X

and y € F(z) there exists a sequence (zp,)nen such that
(1) zo=2, ;1 =y;
(2) zpy1 € F(zy), n€N;
(3) xn 4 e F(x*), for every n — oc.

V.G. Angelov [4] introduced the notion of generalized ¢-contractive single-
valued map in gauge spaces in 1987, meanwhile the concept for multivalued
operators was given in 1998 (see V.G. Angelov [5]). In what follows we will
give a local version of Ciri¢’s theorem ([7]) for generalized @-contractions on

a set with two separating gauge structures.
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Theorem 2.1. Let X be a nonempty set endowed with two separating gauge
structures P = {pa }aca, Q = {¢s}sen (A, B are directed sets), r = {rg}gep €
(0,00)B, 29 € X and F : EZ(I(),’I’) — P(X). We suppose that:

(i) (X,P) is a sequentially complete gauge space;
(ii) there exists a function 1 : A — B and ¢ = {ca }aca € (0,00)4such that

Pa(r,y) < Ca - Q) (T,y), for everya € A and x,y € Ez(xo, T).

(iii) F : Pg(xo,r) — P(X) has closed graph;

(iv) Suppose that for each B € B there exists a continuous function @g :
[0,00) — [0,00), with ¢g(t) < t, for every t > 0 and @z is strictly
increasing on (0,rs] such that for x,y € ES(J;O,T) we have

Hg(F (), F(y)) < (Mg (2,)),

where M§ (z,y) = max{qs(z,y), Dg(z, F(2)), Ds(y, F(y)), 3[Dp(z, F(y)) +

Ds(y, F(x))]}-

In addition assume for each B € B that

Qg3 is strictly increasing on [0, 00), where ®g(z) =z — @a(x), (2.1)
Zg@}g(t) < oo, fort e (0,m5 — @(rp)] (2.2)

and i=1
> eh(rs — wa(rp)) < @p(rs) (2.3)

i=1

hold. Finally suppose the following two conditions are satisfied:

(i) For each 8 € B, we have: Dg(xo, F(xq)) < rg — pa(rs) (2.4)

and

(ii) For every x € Ef;(xo,r) and every e = {eg}pen € (0,00)5, (2.5)

there exists y € F(x) with gg(x,y) < Dg(z, F(x)) + &g, for every 8 € B.

Then F has a fized point.
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Proof. From (2.4) we may choose x1 € F(x¢) with

qp(zo, 1) < rg— pa(rp), for every g € B. (2.6)
Then z; € Eg(xo, T).

For 8 € B choose €3 > 0 with @El(eg) < rg so that

wp(qs(wo, x1) +5) + €5 + 0a(P5 ' (25)) < @a(rs — wa(rp))- (2.7)

This is possible from (2.6) and the fact that ¢g is strictly increasing on (0, 7]

From (2.16) we can choose x5 € F(x1) so that for every 5 € B we have
a1, w2) < Dg(ay, Far)) +ep < Hp(F(xo), F(21)) + €5 (2.8)
We want to see if
qs(w1,22) < p(as(zo, 21) +€5) + 5+ 9a(P5" (5))- (2.9)
We can notice that
Hp(F(xo), F(21)) + e5 < op(Mp(zo, 21)) + €5 (2.10)

Let us consider 75 = max{qg (20, z1), Dg (0, F(20)), Dg(z1, F(21)), 3[Ds(zo, F(21))+

Dp(a1, F(x0))]}-
If v = qp(z0, x1) then from (2.8) and (2.10) we have

qp(r1,22) < Hp(F(x0), F(21)) +ep < pplgp(wo, 1)) +e5 <

IN

0p(gs(zo, x1) +p) + €5 + (P35 (ep))-

So (2.9) is true.
If v3 = Dg(xo, F(x0)) then v5 < ga(zo,x1) so (2.9) is true again.
If v3 = Dg(x1, F(x1)) then (2.8) implies
Dg(ar, F(x1)) < qp(ar,22) < Hg(F(x0), F(21)) + €5 <

< wp(Dg(w1, F(x1))) + g,
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from where we have Dg(z1, F(x1)) — ¢s(Dg(x1, F(21))) < €z, so
Dg(w1, F(21)) < @5 (ep)-

Thus, ¢g(z1,22) < Lp,g(q)gl(zsﬁ)) +ep and (2.9) is true.
If v3 = 3[Da(wo, F(z1)) + Dg(z1, F(x0))] then
Gs(r2) < 3lDa(eo, Fa)) + Dlan, Flao))] + e5 <
< %[%(xo, 1) + qp(21, 2)] + €5,
from where 3qs(z1,22) < 2qs(z0,71) + 5. So
Gs(e1e2) < 9(5[Daw0, F(a1)) + Da(a, Flao))]) +25 <
< @a(5laao0,1) + qa(on,a)]) +25 <

< pplas(zo, 1) +€5) + €5

Thus, (2.9) is true again, which means that it holds in all cases. We now have

from (2.7) that
4p(x1,22) < pp(rs — pp(rs))- (2.11)

Also we can point out that

qs(xo,z2) < qp(xo, 1) + qp(x1,22) <

A

[rs —ep(rp)] + p(rs — wp(rp)) <

IN

rs —@p(rs) +¢p(rs) = s,

Thus, z2 € Ef;(:co,r).

Next, for § € B, we choose dg > 0, with @51(55) < rg so that

0p(ap(w1,2) +0p) + 65+ 0(51) < w5(rp — wp(rp)). (2.12)

This is possible from (2.11).
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From (2.16) we can choose x3 € F(z2) so that for every 8 € B we have
qp(w2,x3) < Dp(x2, F(x2)) + 65 < Hp(F(21), F(22)) + 65
As above, we can easily prove that
qp(w2,23) < p(qp(wa, 3) + 65) + 0p + (D5 (55))- (2.13)

From (2.12) and (2.13) we have that gg(x2, 73) < @3(rs — @s(7s))-
For 8 € B we have

gs(zo,z3) < qglxo,x1) + gp(x1,22) + ga(z2, 23) <
< [rg—p(rp)] + @a(rs — o(rs)) + @i(rg — pprs) <

oo
rs+ | Y _¢h(rs —¢s(rs)) — pp(re) | <rp.
=1

IA

Proceeding in the same way, we obtain x,11 € F(x,), for n € {3,4,...}, with
Tpt1 € Eg(xo,r) and
45(Tn, Tny1) < w(rg — wp(rs)), for every g € B.

From (2.2) it is immediate that {z,} is a Cauchy sequence with respect to
qp, for each f € B. (ii) implies that {z,} is also P-Cauchy, hence it is P-

convergent to some x € Ef;(xo, r). It only remains to show that z € F(x).

Ds(z, F(x))

IN

952, 2n) + Dp(zn, F(2)) <

4@, 2n) + Hp(F(2n-1), F(2)) <

IN

IN

qp(x, xn) + pp(max{gs(rn—1,2), Dg(Tn—1, F(2n-1)), Dz, F(x)),

S D@1, F(@)) + Dy, Flra 1)),

Since Dg(z, F(xn-1)) < qg(x,xn) = 0, Dg(zp—1, F(xn-1)) < qg(Tn-1,Tn) —
0 and |Dg(zp—1, F(x)) — Dg(x, F(x))| < gs(xpn_1,x) — 0, then, letting n —

00, we obtain:

Dy(z, F(z)) <04 ¢5({0,0, Dg(z, F(z)), %Dﬁ(x,F(x))})~
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Thus, Dg(z, F(x)) =0, so x € F(z). O

We continue with a global version of Cirié’s theorem ([7]) for generalized

(p-contractions on a set with two separating gauge structures.

Theorem 2.2. Let X be a nonempty set endowed with two separating gauge
structures P = {pataca, Q = {ap}tpen (A, B are directed sets), v € X
and F : (X,P) — P((X,P)) be a multivalued operator with closed graph. We
suppose that:

(i) (X,P) is a sequentially complete gauge space;

(ii) there exists a function 1 : A — B and ¢ = {ca}aca € (0,00)4such that

Pa(®,y) < ca - Qya)(@,y), for every a € A and x,y € X;

(iii) suppose for each B € B, there exists a continuous function g : [0,00) —
[0,00), with pa(t) < t, for every t > 0 and @g is strictly increasing such
that for x,y € X we have

Hﬂ(F(x)7F(y)) < @ﬂ(Mé?(xvy)))

where

Mé’(x,y) = maX{Qﬁ(x7y)7Dl3($7F(x))vDﬁ(y’F(y))7 %[Dﬂ(x7F(y))+Dl3(yvF(x))]}

In addition assume for each B € B that

O is strictly increasing [0,00), where ®g(x) = x — pg(x), (2.14)
e .
ng};(t) < o0, fort >0 (2.15)
and i=1
for every x € X and every e = {eg}sen € (0, 00)? there (2.16)

exists y € F(x), with gs(x,y) < Dg(x, F(x)) + g, for every 5 € B.

Then F has a fized point.
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Proof. Let r = {rg}gep € (0,00)”. We claim that we can choose 2y € X and
21 € F(xg) such that

ap(w1, o) <715 —p(r). (2.17)
If (2.17) is true then as in Theorem 2.1 we can choose x,11 € F(x,), for

ne€{1,2,..}, with

48(@n, Tnt1) < p5(rg — pp(rp)), for every B € B.

The same reasonings guarantees that {z,} is a P-Cauchy sequence to some
x € X, hence it is P-convergent to some z € X. So as in Theorem 2.1, we
have Dg(z, F(x)) = 0, thus « € F(z).
It remains to show (2.17).
We can observe that (2.17) is immediate if we could show that for any
B € B we have
wig{Dg(x, F(z)) =0. (2.18)

Assuming that (2.18) is true there exists € X with Dg(z, F(x)) < rg —
©(rg), so there exists y € F(x), with gg(x,y) < rg — ¢(r3).
Suppose that (2.18) is false, i.e. suppose that there exists § € B such that

zig)f(DB(x, F(x)) = ds. (2.19)

Since ¢g(0g) < dp and g is continuous, we have that there exists g > 0 such
that
pp(t) < dg, for t € [0p,0p + €3). (2.20)

We can choose v € X such that
05 < D/g(uF(v)) < g +e€s. (2.21)
Then there exists y € F'(v) such that

6 < qp(v,y) <dp+ep. (2.22)
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Thus,
Ds(y, Fly)) < Hp(F(v), F(y)) <
< pp(max{gs(v,y), Ds(v, F(v)), Ds(y, F(y)),
51050, (1)) + Dsly, Fo))1)
Let
v = max{gs(v,y), Ds(v, F(v)), Ds(y, F(y)),

%[Dﬁ(v,F(y)) + Dp(y, F(v))]}.

If v = g3(v, y) then (2.20) and (2.22) yields

Ds(y, F(y)) < ¢p(gs(v,y)) < dp.

If v = Dg(v, F(v)) then (2.20) and (2.21) yields

Ds(y; F(y)) < ¢p(Dp(v, F(v))) < dp.

If v = Dg(y, F(y)) then v = 0, since v # 0 results the following inequality

Dg(y, F(y) < ws(Ds(y, F(y))) < Dp(y, F(y))

which is a contradiction.

Ity = §[Ds(v, F(y)) + Dy(y, F(v))] and 7 # 0 then

Ds(y, F(y)) < ¢p(y) <v= %[Dﬁ(%F(y)) + Dp(y, F(v))] <

<

3195(0,) + Doy, Fly)) + 0,

so $D3(y, F(y)) < 3qs(v,y). Thus, v = 3[Ds(v, F(y)) + Ds(y, F(v))] <
$las(v,y) + Da(y, F(y))] < 3qs(v,y) + 2qs(v,y) = qs(v, y), which contradicts

the definition of v. So we have proved that in this case v = 0, which implies

Dg(y, F(y)) < ¢p(v) = ¢(0) = 0.
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We can notice that in all cases we have Dg(y, F(y)) < dg, which contradicts
(2.19), thus, (2.18) is true, so (2.17) is immediate and the proof is complete.
O

In what follows we will present a homotopy result for Cirié—type generalized

(p-contractions on a set with two separating gauge structures.

Theorem 2.3. Let X be a nonempty set endowed with two separating gauge
structures P = {pataca, Q = {qs}pen (A, B are directed sets), (X,P) is
a sequentially complete gauge space, there exists a function ¥ : A — B and
¢ = {cataca € (0,00)? such that pa(z,y) < co - qya)(®,y) for every a € A
and z,y € X. Let U be an open subset of (X,Q). Let G : U x [0,1] — P(X,P)

be a multivalued operator such that the following assumptions are satisfied:
(i) x ¢ G(z,t), for each x € OU and each t € [0,1];

(i) suppose for each € B there exists a continuous and strictly increasing
function g : [0,00) — [0,00), with @a(t) < t, for everyt >0, such that
for x,y € X we have

Hp(G(x,1), Gy, 1) < (M5 (2,y)),

where

MS(z,y) = max{gs(z,y), Ds(z,G(z,1)), Ds(y, G(y.1)),

S1Ds(, Gy, 1)) + Daly, G, )]

(iii) there exists a continuous increasing function v : [0,1] — R such that

Hp(G(z,t),G(x,8)) < |y(t) —y(s)|, for all t,s € [0,1] and each x € U;

(iv) G : (U, P)x [0,1] — P(X,?P) has closed graph;
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(v) ®g is strictly increasing on [0,00) for each 5 € B, where ®g(x) = x —

905(37)7'
(vi) iojapi(t) < 00, fort>0;
i=1

(vii) for every x € X and every e = {eg}pen € (0,00)8 there exists y € F(z)
with qg(x,y) < Dg(x, F(z)) + g, for every B € B.

Then G(-,0) has a fized point if and only if G(-,1) has a fixed point.

Proof. Suppose that z € FixG(-,0). From (i) we have that z € U. We will

define the following set:
E:={(z,t) €U x [0,1]|z € G(x,t)}.

Since (z,0) € E, we have that F # () . We introduce a partial order defined
on E

(z,t) < (y,s) if and only if £ < s and gg(x,y) < D5 (2[y(s) — v(1)]).

Let M be a totally ordered subset of E, t* := sup{t |(z,t) € M} and
(Znytn)nen= C M be a sequence such that (2,,t,) < (Xp 41, tn1) and £, — t*,

as n — 00. Then
q8(Tm, ) < @El(Q[fy(tm) —(ty)]), for each m,n € N*, m > n,

from where we can conclude that ¢g(zm,,xn) — ©8(q8(Tm, xn)) < 2[Y(tm) —
V(tn)]-

Letting m,n — 400, we obtain that ¢z(@m, zn) — ©a(¢s(Tm,xn)) — 0, so
08(q8(Tm, 2n)) = ¢3(m, Tn), as m,n — +o00. Therefore qg(2y,,z,) = 0, as
m,n — +o0o. Thus, (x,)nen- is Q-Cauchy, so is P-Cauchy too. Denote by
x* € (X, P) its limit. We know that x,, € G(z,,t,), n € N* and G is P-closed.
Therefore we have that z* € G(z*,t*). From (i) we can notice that «* € U.

So (z*,t*) € E.



FIXED POINT RESULTS FOR ¢-CONTRACTIONS ON A SET WITH TWO
SEPARATING GAUGE STRUCTURES 275

From the fact that M is totally ordered we have that (z,t) < (z*,t*), for
each (z,t) € M. Thus, (z*,t*) is an upper bound of M. We can apply Zorn’s
Lemma, so F admits a maximal element (zg,ty) € E. We want to prove that
to=1.

Suppose that tg < 1. Let 7 = {rg}sen € (0,00)" and t €]to, 1] such that
By(zo,73) C U and rg := @;1(2[7(13) —~(to)]), for every 8 € B. Then for each
B € B we have

Dg (0, G(z0,t)) < Dg(xo,G(xo,t0)) + Hp(G(wo,t0), G(wo, 1)) <

< () —lt) = 228 TR i)

Since Ezq)(xo, rg) C U C U, the closed multivalued operator G(-,t) : ES(%O, rg) —
P(X,P) satisfies the assumptions of Theorem 2.1, for all ¢ € [0, 1]. Hence there
exists x € Es(xo,rg) such that € G(x,t). Thus, (z,t) € E. But we know
that

gs(x0,x) <15 = D5t (2[y(t) — (ko))
so we have that (zg, tg,) < (x,t), which is a contradiction with the maximality

of (xg,tp). Thus, toc = 1 and the proof is complete. O

3 Applications

The following result is a particular case of Theorem 2.2, namely the case where
the complete gauge space is endowed with one separating gauge structure and

the multivalued operator is a ¢-contraction.

Theorem 3.1. Let X be a sequentially complete gauge space endowed with
a separating gauge structure and let F : X — P(X) be a p-contraction with
closed graph, i.e. for each o € A (A is a directed set) there exists a continuous

strict comparison function ¢, : [0,00) — [0,00) such that for z,y € X we have
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Ho(F (), F(y)) < ¢alda(z,y)).
We assume that for every x € X and every ¢ € (0,00)* there exists y € F(x)

such that
do(z,y) < Do(x, F(x)) + €4, for every a € A.

Then F has a fixed point.

Remark 3.1. Some well-known examples of continuous strict comparison

functions are:
a) p(t) = at, with a € [0,1);

b) p(t) = 145, t €[0,00).

Definition 3.1. Let E be a Hilbert space. The multivalued operator F
[0,00) X E — Py i (E) is said to be locally Carathéodory if

(i) t — F(t,x) is measurable, for all x € E;
(i) x — F(t,x) is continuous, for a.e. t € [0,00);

(iii) for all R > 0, there exists a function hg € L}, [0,00) such that for a.e.
t € [0,00) and for every x € E, with ||z|| < R, we have H({0}, F(t,z)) <
hr(t).

Throughout E is a Hilbert space. As usual, L!([a,b], E) denotes the Ba-

nach space of measurable functions u : [a,b] — FE such that |u| is Lebesgue
b

integrable with ||ull; = [ |u(t)|dt. We define the Sobolev class W ([a,b], E)
a

as follows: a function v € Wh([a,b], E) if it is continuous and there ex-
t
ists v € L'a,b] such that u(t) — u(a) = [wv(s)ds, for all t € [a,b]. Notice

that if u € Wh([a,b], E) then u is differentiable almost everywhere on [a, b],
¢
u' € L'([a,b], E) and u(t) — u(a) = [u/(s)ds, for almost every t € [a, b].
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Let us consider the following Cauchy-problem
2/ (t) € F(t,z(t)) a.e t € [0, 0],
z(0)=0€ E,

(3.23)

where F is also a Hilbert space and the locally Carathéodory multivalued

operator F'is a y-contraction.

Theorem 3.2. Let (E,||-||) be a Hilbert space and F : [0,00) x E — Py o(E)

be a locally Carathéodory multivalued operator. We suppose that

(a) for every R > 0, there exists lg € Lj,.[0,00) and a continuous, strict
comparison function pr € L, [0,00), with pr(at) < a-(t), for every
a > 1, such that for a.e. t > 0 and for every x,y € E, with ||z||, ||y]| < R,

we have

H(F(t,x), F(t.y)) < Ir(t) - er(lz —yl);
(b) there exists § € L} [0,00) and 1 : [0,00) — [0,00) an increasing and

loc

Borel measurable function such that

(b1) H({0}, F(t,v)) < 0(t) -¥(||v]), for a.e. t €[0,00) and everyv € E
such that 1/v € L}, [0, 00);

loc

(b2) g ﬁ > 0l Lro,n, Sfor all > 0.

Then (3.23) has a solution in Wllo’cl([O, o), E).

Proof. For the proof of our theorem let M : [0,00) — [0,00) be a continuous

and increasing function such that

oo M(t)

/ ds - / ds > (4]
o) T ) (s T e

which is possible by assumption (b2). Let F: [0,00) x E — Py o1(F) be defined
by

Bty — | Tt lull <M0),
’ F(t, 200 ju]| > M(t).

[

(3.24)
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(x ) which means

t o~
Define T : C([0,00), E) — P(C([0,00), E)), T = [F(s,z(s))ds. Sup-
0
pose z is a fixed point for T', thus, x is continuous and zeT
(s,

that x(t) € T(z)(t), for every t € [0,00), so x(t) € fF x(s))ds, for every
t € [0,00). Since

/%(s,x(s))ds - {/vw(s)ds | 0a(s) € F(s, 2(s)), Vs € [0,4], v, € Ll([O,t},E)} ,
0

0

t
it follows that there exists v, € L*([0,¢], E) such that z(t) := [ v,ds, for every
0

€ 10, 00), with v,(s) € }NW(S,:E(S)), for every s € [0,t]. Hence we obtain that
there exist 2/(t) = v,(t) for a.e. t € [0,00) and z € W1([0,00), E). Thus,
z'(t) € %‘(Lx(t)), for a.e. t € [0,00) and x(0) = 0.
We will show that z/(t) € F(t, x(t)), for a.e. t € [0,00).
Suppose that there exists ¢ > 0 such that ||z(¢)|| > M(t). Then we have

that 2'(t) € F (t, %) By assumption (b1l) we have

/ o (M@ -2 O
o < o0-v (| X250 ) =00 v
< 0@0) - P((l=@)]))-
Thus,
BEAQIN
a0 ="
which means that
=@I"
a(=on =
Integrating from 0 to ¢ and via change of variables theorem (v = |lz(s)||) we
obtain Iz p M(t) p
[ G enns [ 55

thus ||(¢)|| < M(t), which is a contradiction.
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Hence ||z(t) , for a.e. t € [0,00) and thus

"(¥) Gth( )) a.e t € [0, 0],

so x is a solution for (3.2
Let Ir(t) = lp(n(t) in assumption (a), for ¢ € [0,n], n € N*. Define on

C([0,00), E) the Bielecki-type semi-norm:

—fth(n)(S)dS
jaln = sup {e 0 el }-

te[0,n]

Then T is an admissible ¢-contraction if:

(1) Hayon)(T(2), T(y)) < omm)(|z —yln), for every z,y € C([0,00), E);

(ii) for every x € C([0,00), F) and for every ¢ € (0,00)N there exists y €
T(x) such that |z — y|, < Dy (x,T(x)) + €p.

For (i) let ¢ € [0,n], x,y € C([0,n], E) and uy € T(x) such that ||z(t)] <
M(t), |ly(t)|| < M(t). Then there exists vy, € F(s,z(s)), s € [0,¢], such that
vy, € LY([0,n], E) and u (¢ fvul )ds. From the inequality below

H(F(t,2), F(t,y)) < ) (©) - emre (lz =y,
it follows that there exists w € F(t,y(s)), s € [0,t], w € L*([0,n], E) such that
[0, —wll < lasy (8) - a1y (12 = yl))-
Thus, the multivalued operator G defined by
G(t) = F(s,y(s)) N {w | [owy = wll < largy(5) - e (2 = ) }

has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski’s

selection theorem (see [12]) there exists v, (s) a measurable selection for G.
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'{‘hen Vu,(8) € F(s,y(s)), s € [0,t], vy, € LY([0,n],F). Define us(t) =
OfvuZ (s)ds € T(y)(t), t € [0,n]. We have:

[ua® = O] < [ o (s) = vis(s)ds
0

t

< / Lty (5) - @ty (12(5) — y(s)])ds
0
/ Flaton@dz [ laom (2)d
- M(n) z)az M(n) z)az
<[ tariny(5) - oar (1) = w(s) | € © )ds
0
/ [ lariny (2)d J larcny (2)d
M(n)(Z)az - M(n)\Z)az
< [ us) - N (EOROIR )ds
0
; T taremy (2)d
M(n)\Z)az
< oz —yl) - / s (5) - €6 ds

0

fth(n)(S)dS
< QJOM(n)(|'7j - y|n) -eo :

Thus, we obtained that [u1 — ualn < @) ([T — yln), for a.e. t € [0,00). By
the analogous relation obtained by interchanging the roles of x and y it follows

that
Huyr(n)(T'(2), T(y)) < om@my (|2 = yln)-

For (ii) we will suppose the contrary, i.e. there exists ¢ € (0,00)"" and
exists © € C([0,00),E) such that for all y € T(z) we have |z — y|, >
Dy(z,T(x))+¢e,. It follows that Dy, (z, T(z)) > Dy (x,T(x)) +&pn, thus &, <0
, for every n € N*. This is a contradiction.

Thus, by Theorem 3.1, the proof is complete.

O

Definition 3.2. Let (2,X%), (®,T) be two measurable spaces and X be a topo-
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logical space. Then a mapping F : Q@ x ® — P(X) is said to be jointly measur-
able if for every closed subset B of X, F~1(B) € QT where X @T denotes
the smallest o-algebra on Q x ®, which contains all the sets A x B with A € 3
and B e T.

Let us consider the following Volterra-type inclusion
t
o(t) € / K(t,5,2(s))ds + g(t) ae. ¢ € [0, 50). (3.25)
0

Theorem 3.3. Let K : [0,00) X [0,00) x R™ — P ,(R™)be a multivalued

operator and g : [0,00) — R™ be a continuous function such that g(0) = 0.

We suppose that
(i) K is jointly measurable for all z € C[0, 00);

(i1) for almost every (t,s) € [0,00) x [0,00) K(t,s,-) : R™ — P(R™) is

continuous;

(iii) for every R > 0, there exists lr € Li,.[0,00)and a continuous, strict

comparison function pr € Li, [0,00) with pr(at) < a-pgr(t), fora>1,
such that

HR(K(t,s,m),K(Ls,y)) < lR(S) : SOR(H-T - yH)’
for every s <t and every x,y € R™, with ||z|, ||y|| < R;

(iv) there exists 8 € L}, .[0,00) and v : [0,00) — [0,00) a Borel measurable

function such that

H({0}, K(t,5,2(s))) < 0(s) - &([[z]]),

for a.e. t € [0,00) with s <t and every x € R™, where 1/v € L} [0, 00)

loc

and

o0
dz
0 ll 0.
O/w(z) > || HLl[O,T]7 fora r>
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Then (3.25) has a solution.

Proof. Let M : [0,00) — [0,00) be a continuous nondecreasing function such

that
M(t)
ds

P(s)

Suppose that there exists a solution z such that ||z|| > M(t), for some

> 101 110,

€ [0,00). Then there exists 0 < ¢; < oo such that
lx(t)|l = M(t1) and 0 < ||z(¢)|| < M(ty1), for every ¢ € (0,1).
The function t — ||z(t)]| is differentiable on (0,¢;) and
a(t) /
< |lz'(¢)]l-
=0 = (= ®) < 120
K (L s,2(s))) < 0(s) - (|lx(t)]) ae.

(0
t € [0,00) and every € R™. Since 2/(t) € K(t, s, z(s)) we have that [|2/(¢)| <
)

From assumption (iv) we have that H (0

0(t) - (]|z]]). Thus we obtain that ||z(¢)||" < 0(¢) - (||z||), from where we have

that

a0
oy <O

Integrating from 0 to ¢; and via Change of variables Theorem we obtain

llz(t) =M (t1) J ty (s )”/ ty M (t1) J
0/ o)~ J wlil) / et < / o)

which is a contradiction.

Let [r(s) = lpr(n)(s) in assumption (iii). For n € N we consider the

Bielecki-type semi-norm:

t

= [ lar(ny (s)ds
jafn = sup {e 0 et }-

telo,n]

Let X = {z € C([0,00),R™) : ||z(t)|| < M(t) for ¢t € [0,n]}.
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We define F': X — C([0,00), R™), F(z)(t) =

o

K(t,s,x(s))ds + g(t). We

want to show that F'is a (-contraction.

Let 1,22 € C([0,n],R™) and u; € F(x1). Then u; € C([0,n],R™) and
t

ui(t) € [K(t, s,21(s))ds + g(t). Thus, there exists ki(t,s) € K(t,s,x1(s))
0

¢
such that ui(t) = [ k1(t,s)ds + g(t). Since
0

Hyrn) (K (8, 8,21(8)), K(t,5,22(5))) < Irn) (8) - @aa(my (lz1 — 22])),

for s <t and ||z1]|, ||z2]] < M(n), follows that there exists v € K(t, s, z2(s))

such that

k1 (t,s) — vl < larny(s) - ar) (e — 22))-

Thus, the multivalued operator G defined by

G(t) = K(t,5,2(5)) N { | [Fa(t,5) = vl < g (5) - @aremy (2 = @2]) |

has nonempty values and is measurable. By Kuratowski and Ryll Nardzewski’s
selection theorem (see [12]) there exists ka(t, s) a measurable selection for G.

Then ky(t,s) € K(t,s,x2(s)) and

lE1(t,5) = Ea(t, s)]| < Iain)(8) - @rmr(n) (lo1 — 22]), for ae. t € [0,00), s < t.
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¢
Define us(t) = [ ka(t, s)ds + g(t) € F(x2). We have:
0

[[ua (2)

up ()] < [ k1 (t, 5) = ka(t; )| ds
/

INA
—

In(n)(8) - ar(ny (|21 — 22||)ds

0
t . .
— Sl (2)dz [y (2)dz
/lM(n)(S)SOM(n)(”xl *IQHE 0 . e0 )ds
0
t

<
—fSlM(n)(Z)dZ ‘flM(,,L)(Z)dZ
< [ taon(®) - pas (Jor = e ) e ds
0
/ [ larny (2)d
M(n)(Z)az
< ot (a1 — wal) - / Lty (5) - €0 s

0

flA/I(n) (s)ds
< oum(lrr — 22n) - €

Thus, we obtained that |ui(¢) — ua(t)]n < @(|x1 — 22|n), for a.e. t € [0, 00).

By the analogous relation obtained by interchanging the roles of z; and x5 it

follows that

Harny(F(21), F(22)) < ¢([|lz1 — 22|n)-

In order to see if F' is an admissible p-contraction we have to prove that for
every € € (0,00)N" and for every z € C([0,00), H) there exists y € F(z) such
that |z —yl|, > Dy (x, F(x))+e,. We will suppose the contrary, i.e. there exists
£ € (0,00)"" and exists z € C([0,00), H) such that for all y € F(x) we have
| —y|n > Dp(z, F(2)) + &p. It follows that D, (x, F(x)) > D,(x, F(x)) + &n,
thus, €, <0, for every n € N*. Which is a contradiction.

Thus, by Theorem 3.1, the proof is complete. O
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