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IMPLICIT AND EXPLICIT ITERATIVE
PROCESS WITH ERRORS FOR COMMON
FIXED POINTS OF A FINITE FAMILY OF

STRICTLY PSEUDOCONTRACTIVE
MAPPINGS

Feng Gu

Abstract

In this paper, a necessary and sufficient conditions for the strong
convergence to a common fixed point of a finite family of strictly pseu-
docontractive mappings of Browder-Petryshyn type are proved in an
arbitrary real Banach spaces using a implicit iteration scheme with er-
rors. The results presented in this paper not only correct some mistakes
appeared in the paper by Y. Su and S. Li [Composite implicit iteration
process for common fixed points of a finite family of strictly pseudo-
contractive maps, J. Math. Anal. Appl., 320(2006), 882-891] but also
improve and extend some recent results by M. O. Osilike [M. O. Osilike,
Implicit iteration process for common fixed points of a finite family of
strictly pseudocontractive maps, J. Math. Anal. Appl., 294(2004), 73-
81],and F.Gu [The new composite implicit iteration process with errors
for common fixed points of a finite of strictly pseudocontractive map-
pings, J. Math. Anal. Appl., 329 (2007), 766-776]. Moreover, in this
paper the methods of proof of main results are also different from that
of Osilike, Su and Li.
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1 Introduction and preliminaries

In this paper we assume that E is a real Banach space and let J de-

note the normalized duality mapping from E into 2P given by J(z) =
{f e E*:(z,f) = ||z||% ||z]| = ||f||}, where E* denotes the dual space of E
and (-, -) denotes the generalized duality pairing. If E* is strictly convex, then
J is single-valved. In the sequel, we shall denote the single-valved duality
mapping by j.
Definition 1.1. Let K be a closed subset of real Banach space F and
T : K — K be a mapping. T is said to be semi-compact, if for any bounded
sequence {x,} in K such that ||z, — Tz,|| = 0 (n — o), then there exists a
subsequence {x,,} C {z,} such that z,,, - z* € K.

Definition 1.2. A mapping T with domain D(T) and range R(T) in E is
called nonexpansive if

1Tz = Ty|| <[lz —yll, Vx,y € D(T) (1.1)

Definition 1.3. A mapping T' with domain D(T) and range R(T') in E is
called strictly pseudocontractive in the terminology of Brower and Petryshyn
[1], if for all z,y € D(T), there exists k € (0,1) and j(z —y) € J(x — y) such
that

(Tz —Ty,j(x —y) <l —yll —kllz —y — Tz - Ty)|?  (12)

If I denotes the identity operator, then (1. 2) can be written in the form
(I =T)w— (I =Ty, jx—y)) =kl =Tz — (I = T)y)|] (1.3)

It is easy to know that every strictly pseudocontractive mapping is L-
Lipschitzian and continuous. Indeed, it follows from (1.3) that

kll(z = y) = (Tz = Ty)|* < ||z —y) = (Tz = Ty)l| - [l5(z = y)Il,

k(T2 = Tyl| = [l = yll) < kll(z —y) = (T2 = Ty)|| < [lz —yll,

ie.,
k+1
5

The class of strictly pseudocontractive mappings has been studied by sev-
eral authors (see, for example, [1, 3-6, 8-12]).

Let K be a nonempty convex subset of E, and let {T;}; be a finite family
of nonexpansive self-maps of K. In [13], Xu and Ori introduced the following

[Tz —Tyl|| < Ll —yl||, where L=
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implicit iteration process. For any zo € K and {a, }52; C (0,1), the sequence
{x,}52, is generated as follows:

Tr1 = (1 — 041)580 + alTlxl,

T = (1 — 012)561 —+ QQTQIQ,
........................... 7

ey = (1 —an)zn_1+anTnzy,

N1 = (1 —ant1)ey +avpTien,

which can be written in the following compact form as follows:
Tp = (1= an)xp_1 +anThz,, Yn>1, (1.4)

where T}, = T}, (modn)-
Using this iteration process, they proved the following convergence theorem
for nonexpansive mappings in Hilbert spaces.

Theorem XO [13] Let H be a Hilbert space and let K be a nonempty closed
convex subset of H. Let {T;}Y, : K — K be N nonexpansive mappings such
that F = NN, F(T;) # 0 (the set of common fixed points of {T;}}¥.|). Let
xog € K and {a,, } be a sequence in (0, 1) with lim,,_,o(1 — ay) = 0. Then the
sequence {x,} defined by (1.4) converges weakly to a common fixed point of
(T

In [7], M. O. Osilike extended their results from the nonexpansive map-
pings to strictly pseudocontractive mappings. by this iteration process, he
proved the following convergence theorems in Hilbert and Banach spaces.

Theorem MO1[7] Let H be a Hilbert space and let K be a nonempty
closed convex subset of H. Let {T;}}Y., : K — K be N strictly pseudocon-
tractive mappings such that F = N, F(T;) # 0 (the set of common fixed
points of {T;}¥.,). Let 7y € K and {a,} be a sequence in (0, 1) with
lim, (1 — @) = 0. Then the sequence {x,} defined by (1.4) converges
weakly to a common fixed point of {T;}¥ ;.

Theorem MOZ2[7] Let E be a real Banach space and let K be a nonempty
closed convex subset of E. Let {T;}¥, : K — K be N strictly pseudocon-
tractive mappings such that F = N F(T;) # 0 (the set of common fixed
points of {T;}¥.|). Let x9 € K and {a,,} be a sequence in (0, 1) satisfying the
conditions:

(i) 0< ay <1,

(i) D00 | ay = 00,

(iii) 5.7, a? < oo.
Then the sequence {z,,} defined by (1.4) converges strongly to a common fixed
point of the mappings {T;}Y , if and only if liminf,,_,. d(z,, F) = 0.



142 FENG GU

Recently, Su and Li introduced the following implicit iteration process. For
any xg € K, the sequence {z,}52  is generated as follows:

Tp = pZp—1 + (1 — ap)Thyn, (1.5)

Yn = ann—l + (1 - 6n)Tnxna n > 17 ’

where T, = Ty (modn), 10 tne1s {Bn}ne1 be two real sequences in [0,1].

Using this iteration process, they proved the following theorem in real
Banach space.

Theorem SL[12]. Let E be a real Banach space and let K be a nonempty
closed convex subset of E. Let {T;}¥_, be N strictly pseudocontractive self-
maps of K such that F = ﬂf\;l F(T;) # 0, where F(T;) = {x € K : Tz =
xz} and let {o,}521,{Bn}52, C [0,1] be two real sequences satisfying the
conditions:

() T (1 ay) = +oo;

(i) S5 (1— an)? < +oo;

(iii) >0 (1—B,) < +oo;

(iv) (1 — a,)(1 — Bn)L? < 1, ¥n > 1, where L > 1 is common Lipschitz
constant of {T;} Y .

Let zg € K and let {x,}22, be defined by (1.5), then
(1) im,, o0 ||2n — p|| exists for all p € F;
(2) iminf, o ||2n — Thzs|| = 0.

Remark 1.1. It should be pointed the Theorem SL generalize and improve
the results of Osilike [7] in 2004, but the proof of [12, Theorem 2.1] has some
problems.

Motivated and inspired by the above works, in this paper, we introduce a
composite implicit iteration process as follows:

{ Tp = (1 — Qp — 'Yn)xn—l + anTnyn + Ynlin, n > 1, (1 6)
Yn = (1 = Bn — 5n)zn—1 + BnTnTpn + 0nvp, n > 1, .
where T5, = Ty (modn)> 10n}s {Bn}s {n}, {0n} are four real sequences in [0, 1]
satisfying a,, + v, < 1 and 8, + 6, < 1 for all n > 1, {u,} and {v,} are two
bounded sequences in K and xg is a given point.

Observe that if K is a nonempty closed convex subset of F and T; : K — K
is a k;-strictly pseudocontractive mapping, then it is a L; Lpschitzian mapping
with L; =1+ ki If apB,L? < 1, where L = maxj<;<ny{L;}, then for given
Tpn-1 € K, vpu, € K and d,v, € K, the mapping S, : K — K defined by:

Sn(x) = (1 —Qp _’Yn)xnfl +anTn{(1 - ﬂn - 6n)xn71 +ﬁnTnx+§nvn} +'7nun7
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for all n > 1, is a contractive mapping. In fact, we have

[[Snz = Snyll = anl|To{(1 = Bn = 6n)Tn—1 + BuTnz + 6nvn}
- Tn{(l — Bn = On)Tn—1 + BnThny + 5nvn}||
< anlyl|Bn(Thr — Thy)||
< apbulillz -yl Yo,y € K.

Since a8, L? < 1, hence S, : K — K is a contractive mapping. By Banach
contractive mapping principle there exists a unique fixed point z,, € K such
that
{ T = (1= an—Y)Tn-1+ anTpyn + Yntn, n > 1,
Yn = (1 - ﬂn - 6n)xn71 + BnTnfEn + 6nvn7 n > 17

Therefore if a,3,L? < 1,V n > 1, then the iterative sequence (1.6) can be
employed for the approximation of common fixed points of an finite family of
strictly pseudocontractive mappings

Especially, if {a,}, {vn} be two sequences in [0, 1] satisfying o, + 7, <1
for all n > 1, {u,} be a bounded sequence in K and x is a given point in K,
then the sequence {z,} defined by

Tpn =1 —an —Yn)Tn-1+ @ TnTn_1 + nttn, ¥n>1 (1.7)

Remark 1.2. As~, = d, = 0for all n > 1, the iteration scheme (1.6) reduces
(1.5).

The purpose of this paper is to study the convergence of implicit iterative
sequence {z,} defined by (1.6) and (1.7) to a common fixed point for a finite
family of strictly pseudocontractive mappings of Browder-Petryshyn type in an
arbitrary real Banach spaces. The results presented in this paper generalized
and extend the corresponding results of F. Gu [3], M. O. Osilike [7] and Su-Li
[12], even in the case of 3, = 0, =0, V¥n > 1 or N = 1 are also new. Moreover,
in this paper the methods of proof of main results are also different from that
of Osilike [7] and Su and Li [12]. At the same time, we also revised the mistake
in [12].

In order to prove the main results of this paper, we need the following
Lemmas:

Lemma 1.1[2]. Let E be a real Banach space and let J be the normalized
duality mapping. Then for any given x,y € E, we have

llz +ylI* < ||z]|* + 2(y, j(z +y)), Vi(x+y) e J(x+y)

Lemma 1.2[8]|. Let {an}, {bn}, {cn} be three nonnegative real sequences
satisfying the following condition:

An+1 S (1 + bn>an + Cn, vn 2 no,
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where ng is some nonnegative integer, ZZOZO cn < 00 and ZZO:O bn, < 00. Then
(1) the limit lim,,_, a, exists.
(2) In addition, if there exists a subsequence {a,,} C {an} such that
an, — 0, then a, — 0 (n — 00).

2 Main results

We are now in a position to prove our main results in this paper.

Theorem 2.1. Let E be a real Banach space and K be a nonempty closed
convex subset of E. Let {T,Ts,--- ,Tn}: K — K be N strictly pseudocon-
tractive mappings with F = NN, F(T;) # () (the set of common fixed points
of {T1, Ty, - ,Tn}). Let {an}, {Bn}, {7}, {6n} are four real sequences in
[0, 1] satisfying o, + v, < 1 and B, + 0, < 1 for alln > 1, {u,} and {v,} are

two bounded sequences in K satisfying the following conditions:

i) fo:l Qp = 00;

(
(i) oo o < oo
(iil) D07, anfBy < 005
(iv) D07 and, < oo;
(V ZZO:1 Yn < OQ;

(vi) anBnL? < 1, where L = maxi<;<n{L;}.
Suppose further that xo € K be any given point and {z,} is the implicit
iteration sequence defined by (1.6), then the following conclusions hold:

(1) limp, o0 ||zn, — p|| exists for all p € F;

(2) iminf,, e ||@n — Thzn|| = 0.
Proof. Sinceeach T; : K — K,i€ I ={1,2,--- , N} be strictly pseudocon-
tractive, then we have Vz,y € K, there exists constants k; € (0,1) and L; > 1
such that

(Tix = Tiy. j(x —y)) < |z =yl = Killz — Tiw — (y = Ty)|*, Viel

and
[Tz — Tiyl| < Lillz —yl|, Viel

Let k = minlSiSN{ki} and L = maxlSiSN{Li}, then
(Tix — Tiy, j(x —y)) <|[lz —y[|* = kllz = Tiz — (y = Ta)|*, Yiel (2.1)

and
|Tix — Tyyl] < Lllz —yl|, Vi€l (2.2)



IMPLICIT AND EXPLICIT ITERATIVE PROCESS 145

Let p € F, it follows from (1.5), (2.1), (2.2) and Lemmal.l that

H;z:n—sz = H(I*O‘n*’Yn)(xn—l*p)JFO‘n(Tnyn*p)JF’Yn(un*p)||2

(1—an— 'Yn)QHxn—l - pH2 + 20, (Tnyn — P, j(Tn — P))

+ 290 (tn — p, j(Tn — p))

(1—an— ’Yn)ZHI'n—l *sz + 200 (Toyn — Tnn, j(Tn — D))
+ 200 (Twp — p, j (20 — p)) + 29 (un — p, j(¥n — p))

IN

< (1- O‘n)2||$nfl _pH2 + 200 | Tnyn — Tnznl| - |20 — pl| + 200 |2y, _pH2
— 200 k||zn — Toza|® + 29nlun — pl| - ||2n — pl|
< (1—an)|lzn—1 = ol + 200 L|lyn — 2ull - |20 — pl| + 2an|zn — pl[?

- 20énk'||$n - TnanQ + Q’Yn”un _p” : ||xn _p||'

From (1.6) and (2.2), we also have that

l[yn = zull = ||Bn(Tntn—Tn1)+0n(vn —2na) +n(Tn1—Tnyn) +7n(Tna —un)||
< ﬁn‘|Tn$n_$n71||+5n||vn_xnfl||+an‘|xnfl_Tnyn||+7n||xnfl_un”
< BullTwwn — pll + BullTn—1 — pl| + 0nllvn — pl| + OnllTn—1 — pl|
+an|[Tn-1 = pll + anl|Toyn — pll + ynllzn-1 = Pl + Ynllun — pl|
< BuLllzn = pll + anllzn—1 = pll + Bullzn—1 — Pl + YnllTn-1 — pl|
+onllzn—1 = pll + @ Ll|yn — pl| + Ynlltn — pl| + 6nl|vn — pl|
< BulLllzn —pll + (an + Bn + 0 + 60 |l2n—1 — pl|
Faon Lllyn — pll + vallun = pl| + 6nllvn —p| (2.4)
and
lyn =2l = (1= Bn—6n)(@n-1—p) + Bu(Tnzn — p) + 6n(ve — pl|
< (1= Bn = d)l|en—1 — || + BullThzn — pl| + dnllvn — pl|
< Alzn—1 = pll + BuLllzn — pl| + 0nllvn — pl| (2.5)

Setting M1 = max{sup{[[u, — pl|* : n > 1}, sup{||v, —pl[* : n > 1}},
substituting (2.4),(2.5) into (2.3), and noticing that 2||z,_1 —pl| - ||zn — || <
|01 = pII? + [lzn = pII?, 2llun = pll - [z = pl| < [Jun = pl|* + [|l2n — pl|* and

(2.3)
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2[lvn = pll - [lzn = pll < [lvn = plI* + [|zn — pl|* we obtain that

|27, —p||2 < (1- an)2||xn71 —p||2 + 20, L(Bn L + aanLQ)Hxn —p||2
+ 20 Loy + Bn + Yo + 0n + o L)||z—1 = p| - [|20 — Dl
+ 2anyn Ll [un = pl| - |20 = Pl + 200 L(65 + andnL)||vn — pl| - |[2n = pl|
+ 20 ||z, —p||2 — 20, k|, — Tnmn||2 + 29nl|tn = pl| - |20 — pl|
(1 = an)?||zn-1 = plI> + 2008, L*(1 + an L) ||, — p][?
+ an Lo, (14 L) + Bn + 7 + 6n) ([2n—1 = pl|> + |20 — pl*)
+ anYn L(|[un = plI? + |Jzn = plI*) + 0ndn L1+ an L) (| |vn — pl|> + |Jzn — pl]?)
+ 200 ||z, —p||2 — 20k, — Tnmn||2 + (| |un _pH2 + [Ty, _pH2)
= {(1- O‘n)2 +anLlan(1+ L) + B+ vn + Onl}H|2n—1 — pH2
+ {20, B L*(1 + an L) + ay L]t (1 + L) + B + Y + 60
+ anYn L + a0, L(1 + an L) + 20, + n H|wn — pl? + (1 + L) My
+ 0 L(1 4+ oy )My — 20, k||2, — T |2
{(1= an)? + anLlan(l + L) + B+ + nl}l2n_1 — pII
+ {20, B, L*(1 + L) + ap Ll (1 4+ L) + Bu 4 Yo + 62
+ L + ann L(1 + L) + 200 + Yo H|#n — pl|? + 0 (1 + L)M;
+ nbn L(1 4+ L)M; — 2, k|2, — Tpp||?
= Tallzn- _pH2 + onllTn —p||2 + (1 + L)M;
+ b L(1 + L)M; — 2, k||z, — Tpn||? (2.6)

IN

IA

where
T = (1 — an)? + an L], (14 L) + By 4 Y + 0]
and
on = 20,8, L*(1+ L) + oy Lo, (14 L) + B + Y + 6,]
+ anYnL + andp L(1 + L) 4+ 20, + vn.
Transposing and simplifying above inequality (2.6), we have

T, + apd, L)(1+ L)M
(l_n >|xn_1_p|2+(7n nln_)o—( ) 1

2a,k
- - n_Tn n 2
(225 ) ko - Tusa

n n + andnL)(1+ L)M
_ 1+ H Han—p\lz-i—(v )( ) 1
1—o0, 1—o0,

200,k
- ( P > ||£an *Tn‘rnHQa (27)

A

||y, —p||2 >

1—
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where

Un = Tnt+o,—1
= 04721+2anL[an(1+L)+6n+7n+5n]
+ 20, B L*(1 + L) + apyn L 4 6, L(1 4 L) + 7,

It follows from the conditions (ii)-(v) that

on = 20,8, L*(1+ L)+ anLia, (1 + L) 4 Bn + Yo + 6,
+ apynL + nd, L(1+ L) + 20, + v — 0 (n — 00),

therefore there exists a natural number ng such that 1—o,, > % for any n > nyg.
Hence, from (2.7) we have

l|2n — pH2 < (T4 2p)|[wn—1 —p||2 +2(Yn + and, L)(1 + L) M,
— 20, k||zy — Thwn||?

= (1+b)||lzn-1 —p||2 + cn — 20, k||, — TnanQ, Vn >(8¢)

where b, = 2u, and ¢, = 2(y, + @6, L)(1 + L)M;. From the conditions
(ii)-(v) it is easy to see that > >~ b, < oo and >, ¢, < co. Thus using
(2.8) and Lemma 1.2 we have limit lim,, . ||z, — p||* exists, and so limit
limy, o0 | |25 — pl| exists (since ||z, — p|| > 0).

Since lim,,_ ||z, — p|| exists, then {x,} is bounded, hence there exists
constant My > 0 such that ||z, —p||> < Ma, ¥n > 1. It also follows from (2.8)
that

20 k|2 — Tnanz < zn-1 *sz —|zn 7p||2 + bnlzn—1 *p||2 +Cn
< Hxn—l _pH2_ ||xn_p||2+bnM2+Cn7 Yn > ng.

Thus

oo o o0

2k Y aglley = Tyl <o, —plP+ My Y b+ Y ¢
j=no+1 Jj=no+1 Jj=no+1

and hence

oo oo oo

2k Z anl|Tn — Tnwn|? < ||Tn, — pl|* + My Z by + Z Cn.- (2.9)
n=1 n=1 n=1

By virtue of the 77, b, < 0o and >~ | ¢, < 00, it follows from (2.9) that

oo
Z ap||Tn — Tnacn||2 < 0.

n=1
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Since Y7 | ay, = 00, then we must have
liminf ||z, — Tx,|| = 0.
n—oo

This completes the proof of Theorem 2.1. [J

Remark 2.1. Theorem 2.1 is a generalization of Theorem SL, that is, if
Yn = 6, = 0 for all n > 1, then one can get Theorem SL from Theorem 2.1.

Remark 2.2. Noticing that, the inequality (2.12) is error in Su and Li [12].
Moreover, it can not be obtained about the Theorem SL [12] because of the
error. In here, we give a correction for proof of the Theorem SL use a new
method.

Corollary 2.2. Let E be a real Banach space and K be a nonempty closed
convex subset of E. Let {T,Ts,--- ,Tn}: K — K be N strictly pseudocon-
tractive mappings with F' = NN, F(T;) # () (the set of common fixed points
of {T1, Tz, ,Tn}). Let {a,} and {,} are two real sequences in [0, 1] sat-
isfying o, + v, < 1 for alln > 1, {u,} be a bounded sequence in K satisfying
the following conditions:

(i) Dpeq an = 003

(i) Do,y on < oo

(iil) 07 n < o0.
Suppose further that o € K be any given point and {x,} is the explicit
iteration sequence defined by (1.7), then the following conclusions hold:

(i) limy, o0 ||2n — p|| exists for all p € F;

(ii) liminf, o || — Thaa|| = 0.

Proof. Taking 8, = §, =0, Vn > 1 in Theorem 2.1, then the conclusion of
Corollary 2.2 can be obtained from Theorem 2.1 immediately. This completes
the proof of Corollary 2.2.[7

Theorem 2.3. Let E be a real Banach space and K be a nonempty closed
convex subset of E. Let {T,Ts,--- ,Tn}: K — K be N strictly pseudocon-
tractive mappings with F = N, F(T;) # () (the set of common fixed points
of {T1,Ta,--- ,Tn}). Let {an}, {Bn}, {7n}, {0n} are four real sequences in
[0, 1] satisfying o, + v, < 1 and B,, + 0, < 1 for alln > 1, {u,} and {v,} are
two bounded sequences in K satisfying the following conditions:

(1) Xpe1 an = 0o

(i) >,y on < oo

(iii) Evozo:l o B, < 00;

(iv)

(V) Z’Zozl Yn < OQ;

(vi) anBnL? < 1, where L = maxj<;<n{L;}.

. o0
Yoy Oy < 005
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Suppose further that xo € K be any given point and {x,} is the implicit iter-
ation sequence defined by (1.6), then the sequence {x,} convergence strongly
to a common fixed point of the mappings family {T;}¥, if and only if

liminf d(x,, F) = 0. (2.10)

n—oo

Proof. The necessity of condition (2.10) is obvious.
Next we prove the sufficiency of Theorem 2.3. For any given p € F, it
follows from (2.8) in Theorem 2.1 that

llzn = plI* < (1 +bn)|lzn—1 = pII* + cn, ¥n > no, (2.11)

where sequences {b,} and {c,} satisfying > 7, b, < oo and Y -, ¢, < .
Hence, we have

[d(z, F)]* < (14 bp)[d(zn_1, F)]* +cn, ¥n > no. (2.12)

It follows from (2.12) and Lemma 1.2 that the limit lim,, oo [d(z,, F)]? exists,
further, limit lim,,_, o d(x,, F) exists. By the condition (2.10), we have

lim d(x,, F)=0.

n—oo

Next we prove that the sequence {z, } is a Cauchy sequence in K. In fact,
since Y0 by, < 00, 1+t < exp{t} forallt > 0, and (2.11), therefore we
have

| — p||* < exp{bp}|Tn_1 — p||* + cnyn > no. (2.13)

Hence, for any positive integers n, m, n > ng, from (2.13) we have

|Zn4m — pH2 < exp{butmHTnim—1 — p||2 + Cntm
< exp{bn+m}[exp{bn+m—l}‘|xn+m—2 - p”2 + Cn+m—1} + Cnim
= eXp{bn+m + bn+m71}||xn+mf2 - p| |2 + eXp{bn+m}cn+mfl + Cn4+m
g ..........................................
<

n+m n+m n+m
eXp{ > bi}lﬂ:npl2+e><p{ > bi} > e

i=n+1 i=n+2 1=n+1

< Wllan —plP+W Z Ci-
i=n—+1

where W = exp{} ", by} < oo.



150 FENG GU

Since limy, o0 (@, F) =0 and > 7, ¢, < 00, for any given € > 0, there
exists a positive integer ny > ng such that

2 > 2
(2, F)> < ——— i< > .
[ (.’E ’ )] < 8(W+1)7 7;:2’”;»10 < 4W7 vnfnl

Therefore there exists p; € F' such that
2

Vn > ny

[0 = p1|* < e, ¥n >
4W +1)

Consequently, for any n > n; and for all m > 1 we have

lznsm = @all® < (Jontm = pill + llzn — p1l])?

< 2l[ensm = 1l* + (2 — p1]1?)
(oo}
< 214+ W)llazn — il +2W D ¢
1=n+1
62 62
20— (14 W) +2W - —
< 2 qwapttM A o

= .
ie.,
[|Tntm — znl| < e
This implies that {x,} is a Cauchy sequence in K. By the completeness of
K, we can assume that x,, - * € K. Observe that if T : K — K is strictly

pseudocontractive and {p,, }22 ; is a sequence in F'(T') which converges strongly
to some p, them

llp=Tpll < |lp—pnll+|lpn —Tpl|
lp = pull + [|TPn — Tpl|
(1+L)[lp —pnll = 0 (n — o).

A

Thus p € F(T), so that F(T) is closed. It follows that F(T;) is closed for all
1 € I, so that F is closed. Since

lim d(z,,F) =0,

n—oo

we must have that =* € F'. This completes the proof of Theorem 2.3. [J

Corollary 2.4. Let E be a real Banach space and K be a nonempty closed
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convex subset of E. Let {Ty, Tz, - ,Tn}: K — K be N strictly pseudocon-
tractive mappings with F' = NN, F(T;) # 0 (the set of common fixed points
of {T1, Ty, - ,Tn}). Let {a,}, and {v,} be two real sequences in [0, 1] satis-
fying ap, + v, < 1 for alln > 1, {u,} be a bounded sequence in K satisfying
the following conditions:

(i) ey an =00

(i) Do,y on < oo

(iil) Y07 Yn < 00.
Suppose further that xo € K be any given point and {x,} is the explicit iter-
ation sequence defined by (1.7), then the sequence {x,} convergence strongly
to a common fixed point of the mappings family {T;}Y, if and only if the
condition (2.10) is satisfied.

Proof. Taking 8, = §, =0, Vn > 1 in Theorem 2.3, then the conclusion of
Corollary 2.4 can be obtained from Theorem 2.3 immediately. This completes
the proof of Corollary 2.4.0J

In the case of N =1, (1.6) become the implicit iteration process as follows:

1 >
{xn (1= an = n)Tn—1 + anTyn + Yntn, 1 > 1, (2.14)

Yn = (1 — Bn — 6n)$n—1 + B Txy, + 6nvna n>1,

The conclusion of Theorems 2.1 and 2.3 are still valid for the iteration
process (2.14). Furthermore, we have the following result:

Theorem 2.5. Let E be a real Banach space and K be a nonempty closed
convex subset of E. Let T : K — K be a semi-compact strictly pseudocon-
tractive mappings with F(T) ={z € K : Tx =z} # 0. Let {an}, {8n}, {7},
{6, } are four real sequences in [0, 1] satisfying o, + v, < 1 and B, + 6, <1
for all n > 1, {u,} and {v,} are two bounded sequences in K satisfying the
following conditions:

(vi) anBnL? < 1.

Suppose further that xg € K be any given point and {x,, } is the implicit itera-
tion sequence defined by (2.14), then the sequence {x,} convergence strongly
to a fixed point of T

Proof. By the Theorem 2.1 we known that

liminf ||z, — Tz,|| =0,
n— 00
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then there exists a subsequence {ny} of {n} such that

lim ||zn, — T2, || =0. (2.15)
k—o0

By the semi-compactness of T, there must exists a subsequence {znk} of
{Zn, } such that /

lim z,, = po.

17— 00 v
It follows from (2.15) that py = T'pg, hence pg € F(T). Since lim,,_, o ||Zn—pol]
exists, then

lim z, = po.
n—oo

This completes the proof of Theorem 2.5.00

Corollary 2.6. Let E be a real Banach space and K be a nonempty closed
convex subset of E. Let T : K — K be a semi-compact strictly pseudocon-
tractive mappings with F(T) = {x € K : Tx = z} # (. Let {a,} and {v,}
be two real sequences in [0, 1] satisfying o, + v, < 1 for alln > 1, {u,} be a
bounded sequence in K satisfying the following conditions:

(i) ZZO:1 Qp = O0;

(i) S a2 < oo

(i) Sony 7 < o0.
Suppose further that xo € K be any given point and {x,} is the explicit
iteration sequence defined by

Tn = (1= an —Yn)Tn-1+ @ TTn_1 + Yntn, n > 1. (2.16)

Then the sequence {x,} convergence strongly to a fixed point of T

Proof. Taking 5, = 6, =0, Yn > 1 in Theorem 2.5, then the conclusion of
Corollary 2.6 can be obtained from theorem 2.5 immediately. This completes
the proof of Corollary 2.6.
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