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LINEAR STABILITY RESULTS IN A

MAGNETOTHERMOCONVECTION

PROBLEM

A. Georgescu and F. - I. Dragomirescu

Abstract

An analytical study of a magnetothermoconvection problem where
the exchange of stabilities holds and the dynamically free boundaries are
thermally and electrically perfectly conducting is performed. The im-
portance of the boundary conditions-independent part, hidden by the
use of Fourier series methods, but evidentiated by the direct method
based on the characteristic equation is shown. It is emphasized that
the secular equation splitting provides a basis for extending the Chan-
drasekhar’s power law [4] type results to a wider class of problems in
linear stability of any continuum.

1 Introduction

Interactions of fluid flows with other phenomena such as magnetic or electric
ones gave rise to adjacent domains, e.g. magnetohydrodynamics (MHD), elec-
trohydrodynamics (EHD) or ferrohydrodynamics (FHD). Each of them has
a large variety of applications and has been studied intensively. Most of the
MHD problems governing the motion of a conducting fluid in a magnetic field
concern liquid metals or plasma. The major use of MHD is in plasma physics,
astrophysical plasma for instance. Another application of great interest is the
generation of electricity by using liquid metals driven by a magnetic field.

Key Words: magnetothermal convection, secular equation, linear stability limits.
Mathematics Subject Classification: 76E25, 74S25.
Received: April 2009
Accepted: October 2009

119



120 A. GEORGESCU and F.- I. DRAGOMIRESCU

Time-independent MHD equilibria also form the basis for more advanced ki-
netic and particle-based models of plasma behaviour.

In Tokamak experiments, the so-called tearing instability, destroying the
equilibrium magnetic configuration is observed. In [3] the existence of suc-
cessive (bifurcation stationary Hopf) for the sets of magnetohydrodynamic
equations generally depending on some radial coordinate, was proven mathe-
matically.

The main purpose of a linear stability study and in particular of the sta-
tionary convection appearance is to find the critical values of the eigenvalue
represented by the Rayleigh number for various values of the other physical
parameters for which the instability sets in. In industrial processes this of-
fers the possibility to eliminate the causes of the occurrence of turbulence by
controlling the physical parameters, the shape or the machine design.

Herein the analytical investigation is performed for a magnetothermocon-
vection problem where the electrically perfectly conducting and dynamically
free boundaries are thermally perfectly conducting and overstability is valid.
This S. Chandrasekhar’s problem (1952) has been investigated in [1] by using
linear stability analysis proving the existence of overstable motions when the
boundaries are dynamically free and thermally and electrically perfectly con-
ducting. A complete proof of the Chandrasekhar prediction for situations of
a quite general nature of the boundary surfaces was also yielded. The physi-
cal problem of modelling of the initiation of stationary magnetohydrodynamic
convection manifesting in a simple Bénard configuration was initially investi-
gated by Chandrasekhar. He proved that an asymptotic dependence of the
critical Rayleigh number on the Chandrasekhar number Q takes place in the
case of both boundary surfaces dynamically free and electrically conducting.
Then the numerical evaluations for the case of both surfaces rigid and the case
of one rigid and the other dynamically free led to the so-called Chandrasekhar
conjecture: this type of power law π2Q also holds.

The initiation of the magnetothermoconvection as solution bifurcating from
the conduction state in a horizontal layer of a thermally and electrically con-
ducting fluid is governed by the two-point problem







(D2 − a2)(D2 − a2 − p/σ)W = Ra2Θ − QD(D2 − a2)h,
(D2 − a2 − p)Θ = −W,
(D2 − a2 − pσ1/σ)h = −DW,

(1)

W = Θ = D2W = h = 0 at z = ±0.5 (2)

where a represents the wavenumber, σ1 and σ are the thermal and mag-
netic Prandtl number,respectively, R is the Rayleigh number, Q is the Chan-
drasekhar number, p = pr +ipi is the complex growth rate of the normal mode



LINEAR STABILITY RESULTS 121

perturbation, z is the independent variable in the vertical upwards direction,

D ≡ d

dz
, W is the vertical component of the velocity, Θ is the amplitude of

the temperature perturbation field and h is the amplitude of the magnetic
perturbation field, W,Θ, h : [−0.5, 0.5] → C.

For the case of rigid boundaries surfaces the boundary conditions read

W = Θ = DW = h = 0 at z = ±0.5 (3)

Further on we consider only the case p = 0, i.e. we assume that the
principle of exchange of stabilities holds. Then the neutral stability of the
thermal conduction is governed by the eigenvalue problem (1), (2) where p = 0,
consisting of a system of linear ordinary differential equations (1) with constant
coefficients and a set of boundary conditions (2). Here R is the eigenvalue
and the vector of the unknown functions U = (W,Θ, h) is the corresponding
eigenvector. However, the study can be carried out for other stabilities on the
same lines and for other continua too.

Problem (1)-(2) can be written in a matriceal form as:
{

LU = 0 − 0.5 ≤ z ≤ 0.5,
BU = 0, z = ±0.5.

(4)

with

L =





(D2 − a2)2 −Ra2 QD(D2 − a2)
1 D2 − a2 0
D 0 D2 − a2





and the boundary conditions written for both dynamically free bounding sur-
faces. The domain of definition of the matriceal differential operator L is

D(L) = {U = (W,Θ, h) ∈ (L2(−0.5, 0.5))3|W = D2W = Θ = h = 0 at z = ±0.5}.

Each unknown function in problem (1)-(2) can be uniquely written as a
sum of an odd function and an even function, i.e. W = Wo+We, Θ = Θ0+Θe,
h = he + ho. Since an even function is equal to an odd one only if they are
both null, the problem splits in the following two-point problems







(D2 − a2)2We = Ra2Θe − QD(D2 − a2)ho,
(D2 − a2)Θe = −We,
(D2 − a2)he = −DWo,

(1)e

We = D2We = Θe = ho = 0 at z = ±0.5. (2)e

and






(D2 − a2)2Wo = Ra2Θo − QD(D2 − a2)he,
(D2 − a2)Θo = −Wo,
(D2 − a2)ho = −DWe,

(1)o
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Wo = D2Wo = Θo = he at z = ±0.5. (2)o

In spite of the fact that the functions We, Θe, occurring in (1)e - (2)e are
even and ho is odd, each term in equation (1)e is an even function. This is
the reason why (1)e-(2)2 is called the even problem. Similarly, (1)o - (2)o is
called the odd problem. Correspondingly, the general secular equation SEg

can be written as SEg = SEe · SEo, where SEe = 0 and SEo = 0 are the
equations of the neutral hypersurface corresponding to even and odd problems
respectively. Therefore solving the eigenvalue problem (1)-(2) is equivalent to
solving problems (1)e-(2)e and (1)o-(2)o in appropriate spaces of even and
odd functions separately. The smallest eigenvalue Rmin will be a solution of
SEe = 0 or SEo = 0 and, as a consequence, the corresponding eigenfunctions
W , Θ, Dh will be even or odd.

Remark that, if for a particular choice of the parameters, the smallest
eigenvalue corresponds to the even solution, then the situation still holds for
any other values of those parameters [6].

Obviously, by solving SEe = 0 or SEo = 0 instead of SEg = 0 simplifies
the computations, i.e. instead of evaluating a n-th order determinant, we shall

evaluate an
n

2
-th order determinant [8].

In Section 2.1 we present the results from [1], in Section 2.2 we apply the
Fourier series techniques and in Section 2.3 a direct method based on the char-
acteristic equation. All these approaches show that the secular equation can be
written as a product of two terms: one taking into account the boundary con-
ditions and the other leading to the determination of the smallest eigenvalue
from the characteristic equation.

2 Analytical methods

The analytical methods used by us in order to solve (1)-(2) are: the Budianski-
DiPrima (B-D) method, the Chandrasekhar-Galerkin method (C-G) and the
direct method. The first two methods are based on Fourier series expansions.
In the B-D method and its variant, used in [1] by Banerjee, Shandil and Ku-
mar (B-Sh-K method) and presented by us, the eigensolution is looked for in
the form of a Fourier series whose expansion functions do not satisfy all the
boundary conditions of the eigenfunctions. Each boundary condition which is
not fulfilled will introduce a constraint in the form of a series involving the
Fourier coefficients. The Fourier coefficients are solutions of a system of lin-
ear nonhomogeneous algebraic equations obtained by imposing to the Fourier
expansion of the eigensolution to satisfy the boundary conditions. In the B-D
method the Fourier coefficients are deduced from the system in terms of some
unknown boundary values of the eigenfunctions and/or their derivatives defin-
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ing the constraints. Then they are introduced into the constraints to produce
a secular equation in the form of an infinite series. In the C-G method the
secular equation is an infinite determinant.

2.1 The B-Sh-K method

In the B-Sh-K method the Fourier coefficients of all eigenfunctions are ex-
pressed in terms of the Fourier coefficients of one eigenfunction alone (this is
equivalent to solving the algebraic system). Next the constraints are used as
another algebraic system which provides some of the Fourier coefficients in
terms of others. Thus, the corresponding eigenfunctions satisfy all the bound-
ary conditions. Then the application of the Galerkin-Ritz methods yields the
secular equation.

Following [2] let us consider the set {cos(πz), cos(3πz), cos(5πz), ...} total
in the subspace of L2(−0.5, 0.5) consisting of even functions.

{sin(πz), sin(3πz), sin(5πz), ...} is a total set in the subspace of L2(−0.5, 0.5)
consisting of odd functions. In the case of free boundaries, we assume that h

is even and that Θ, W are odd, h =
∞
∑

n=0
hn cos(2n + 1)πz, where the corre-

sponding boundary conditions (2) are taken into account, and

Θ(z) =

∞
∑

n=0

Θn sin(2n + 1)πz,W (z) =

∞
∑

n=0

Wn sin(2n + 1)πz.

Using the backward integration technique and introducing the notation
DW (0.5) = α, D3W (0.5) = β, DΘ(0.5) = γ, (1)2,3 imply

Wn = Enhn, Θn =
hn

(2n + 1)π
+

2
√

2(−1)nγ

E2n+1(2n + 1)π
(5)

where En =
[(2n + 1)2π2 + a2]

(2n + 1)π
. An equivalent expression for Θn can be

derived from (1)1 in the form

Θn =
1

Ra2
{(E2

n +a)(2n+1)2π2Enhn +2
√

2(−1)n−1[β+2a2γ]−(2n+1)2π2α}.
(6)

Elimination of h and Θ between (1)1,2,3 leads to the equation

[(D2 − a2)3 + Ra2 − QD2(D2 − a2)]W = 0. (7)

Taking into account (2) an additional boundary condition can be considered,
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i.e. D4W = 0. Three constraints must be imposed

∞
∑

n=0

(−1)nEnhn = 0, (8)

∞
∑

n=0

(−1)n{−(2n + 1)2π2Enhn + 2α} = 0, (9)

∞
∑

n=0

(−1)n{JnEnhn + 2[β − (2n + 1)2π2α]} = 0, (10)

where Jn = (2n + 1)4π4. From (8)-(10) the expressions of h1, h2 and h3 in
terms of h0, h4, h5,.. can be deduced. We have

h1 =
9

5

E0

E1
h0+

14

5

E4

E1
h4+...+(−1)n {[(2n + 1)2 − 35] − 4(2n + 1)2}

640

En

E1
hn+...,

(11)

h2 =
E0

E2
h0 +6

E4

E2
h4 + ...+(−1)n {[(2n + 1)2 − 21]2 − 16(2n + 1)2}

384

En

E2
hn + ...,

(12)

h3 =
1

5

E0

E3
h0+

21

5

E4

E3
h4+...+(−1)n {[(2n + 1)2 − 15]2 − 4(2n + 1)2}

960

En

E3
hn+....

(13)
Introducing these expressions in the Fourier series for h, W and Θ we obtain
expansions which satisfy all the boundary conditions (2) although these con-
ditions are not satisfied for each expansion function. The expression for W
reads

W (z) = E0h0 sinπz +
(9

5
E0h0 +

14

5
E4h4 −

54

5
E5h5 + 27E6h6 + ...+

+(−1)n {[(2n + 1)2 − 35]2 − 4(2n + 1)2}
640

Enhn + ...) sin 3πz +(E0h0 +6E4h4−

−21E5h5 + E6h6 + ... + (−1)n {[(2n + 1)2 − 21]2 − 16(2n + 1)2}
384

Enhn + ...
)

sin 5πz + (
1

5
E0h0 +

21

5
E4h4 −

56

5
E5h5 + E6h6 + ...+

+(−1)n {[(2n + 1)2 − 15]2 − 4(2n + 1)2}
960

· Enhn + ...) sin 7πz+

+

∞
∑

n=4

Enhn sin(2n + 1)πz
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and, taking into account (7), leads to the following secular equation

L0 0 0 0 . . . 0 . . .

9

5
L1

14

5
L1 −

54

5
L1 27L1 . . . (−1)n

{[(2n + 1)2 − 35]2 − 4(2n + 1)2}

640
L1 . . .

L2 6L2 −21L2 50L2 . . . (−1)n
{[(2n + 1)2 − 21]2 − 16(2n + 1)2}

384
L2 . . .

1

5
L3

21

5
L3 −

56

5
L3 24L3 . . . (−1)n

{[(2n + 1)2 − 15]2 − 4(2n + 1)2}

960
L3 . . .

0 L4 0 0 . . . 0 . . .

0 0 L5 0 . . . 0 . . .

= 0

where Lk = [(2k +1)2π2 +a2]4 −Ra2[(2k +1)2π2 +a2]+Q[(2k +1)2π2 +a2]2.

2.2 The B-D method

In the Hilbert space L2(−0.5, 0.5) we consider the bases {E2n−1}n∈N, E2n−1(z) =√
2 cos(2n − 1)πz and {F2n−1}n∈N, F2n−1(z) =

√
2 sin(2n − 1)πz. The B-D

method is a weighted residual type method so that, taking into account also
the parity of the unknown functions in (4), the solution has the spectral rep-
resentation

W =
∞
∑

n=1

W2n−1E2n−1(z), Θ =
∞
∑

n=1

Θ2n−1E2n−1(z), h =
∞
∑

n=1

h2n−1F2n−1(z). (14)

The boundary conditions (2)o for W and Θ are automatically satisfied, while
the condition for he, i.e. he(±0.5) = 0, introduces a constraint.

The series expansions of the derivatives occurring in (1)o are obtained by
the backward integration technique [8]. Substitute these expressions in (1)o

and impose the condition that the obtained equations be orthogonal to E2m−1,
m = 1, 2, ... to get the system























A2
nW2n−1 − Ra2Θ2n−1 − Q(2n − 1)πAnh2n−1 = 2

√
2(−1)nα1(2n − 1)πQ,

W2n−1 − AnΘ2n−1 = 0,

−(2n − 1)πW2n−1 − Anh2n−1 = 2
√

2α1(−1)n,

with the notation α1 = Dh(0.5) and An = (2n − 1)2π2 + a2. The secular
equation has the form

∞
∑

n=1

4α1
A3

n + (2n − 1)2π2QAn − Ra2

A4
n + (2n − 1)2π2A2

nQ − Ra2An

= 0. (15)
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If A3
n + (2n − 1)2π2QAn − Ra2 6= 0 the secular equation is equivalent to the

impossible relation
∞
∑

n=1

1

An

= 0. Therefore we must have

R =
A3

1 + π2QA1

a2
=

(π2 + a2)[(π2 + a2)2 + π2Q]

a2
.

Let us now apply the C-G method. First we modify the system by a

translation of the variable z, x = z +
1

2
allowed by the symmetry of the

eigenvalue problem with respect to z = 0.5. Then the boundary conditions can
be written at 0 and 1. Following the strategy from [10] we recast the eigenvalue
problem (1)-(2) in a system of differential equations supplied with boundary
conditions only and no constraints. Using the notation T = (D2 − a2)W we
have















(D2 − a2)T − Ra2Θ + QD(D2 − a2)h = 0,
(D2 − a2)Θ + W = 0,
(D2 − a2)h + DW = 0,
(D2 − a2)W − T = 0,

(16)

with the boundary conditions

T = W = Θ = h = 0 at z = 0, 1. (17)

In this case a suitable spectral representation is based on the complete set of
functions {sin(nπz)}n∈N∗ , {cos(nπz)}n∈N∗ from L2(0, 1), i.e.

T =
∞
∑

n=1

Tn sin(nπz), W =
∞
∑

n=1

Wn sin(nπz), Θ =
∞
∑

n=1

Θn sin(nπz),

h =

∞
∑

n=1

hn cos(nπz).

The corresponding infinite algebraic system for the Fourier coefficients Tn,
Wn, Θn, hn, n ∈ N

∗ has the form







































−BnTn − Ra2Θn + Qnπhn[Bn + a2] = −Qnπα′,

−BnΘn + Wn = 0,

−Bnhn + nπWn = α′,

−BnWn − Tn = 0,

(18)
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with the notations α′ = α2(−1)n−1 + β2, α2 = Dh(1), β2 = Dh(0). Then the

secular equation becomes
∞
∑

n=1
(−1)nα′

B2
n + QBnn2π2 − Ra2

B3
n + QBnn2π2(Bn + a2) − Ra2Bn

= 0

and it has no solution for B2
n + QBnn2π2 − Ra2 6= 0 since it reduces to

∞
∑

n=1

1

Bn

= 0, with Bn = n2π2 + a2.

However, if B2
n + QBnn2π2 −Ra2 = 0, then the same neutral curve as for

the secular equation (15) follows.

2.3 The direct method

So far, in the free boundaries case, the problem was solved using methods
based on Fourier series expansions satisfying all or just a part of the boundary
conditions and the idea that in the general case the secular equation does not
have any solution was emphasized. Herein the main idea is pointed out: the
independence of the eigenvalues of the boundary conditions.

This possibility was found already in [7] and then in [9]. More precisely, in
[7] by using the method based on the characteristic equation, three concrete
problems on fluid flow stability were studied. In our case, it was found that
the secular equation, yielding the eigenvalues splitted into a product of two
equations: one depending and the other not depending on the boundary con-
ditions. The boundary conditions-dependent equation had no solution while
the other led to

3
∏

k=1

cosh(λk/2) sinh(λk/2) = 0, (19)

implying cosh(λk/2) = 0, hence λ2
k = −(2k − 1)2π2.

Eliminating Θ and h from (1) the differential equation (7) in W follows.
Consider only the case of those a,R,Q for which the associated characteristic
equation µ3 − Q(µ2 + a2µ) + Ra2 = 0, where µ = (λ2 − a2), has no multiple
solutions, so the general form of the solution of (7) is

W (z) =
3

∑

i=1

[Ai cosh(λiz) + Bi sinh(λiz)]. (20)

Since imposing to this λk to satisfy the characteristic equation, the eigenvalue
R follows, apparently the boundary conditions (2) play no role in the determi-
nation of the eigenvalue. This is not true because for the boundary condition
(3) the corresponding secular equations has another splitting. The boundary
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conditions on W , i.e. W = D2W = D4W = 0 at z = ±0.5 can be written as































3
∑

i=1

[Ai cosh(λi/2) + Bi sinh(λi/2)] = 0,

3
∑

i=1

[Aiλ
2
i cosh(λi/2) + Biλ

2
i sinh(λi/2)] = 0,

3
∑

i=1

[Aiλ
4
i cosh(λi/2) + Biλ

4
i sinh(λi/2)] = 0,

and lead to the secular equation ∆1 · ∆2 = 0, where

∆1 = sinh(λ1/2) sinh(λ2/2) sinh(λ3/2)(µ3 − µ1)(µ3 − µ2)(µ2 − µ1),

∆2 = cosh(λ1/2) cosh(λ2/2) cosh(λ3/2).

In general, the boundary conditions-dependent equation ∆1 = 0 yields
the eigenvalue leading to the neutral manifold, but as we have seen, in our
case this equation has no solution. The boundary conditions-independent
equation ∆2 = 0 is usually disregarded due to the fact that the hiperbolic
cosine is nonvanishing. However, this is true only for real λk while, due to the
involved physical parameters, λk can be purely imaginary numbers too. For
instance, assume that λ1 = i|λ1|(i =

√
−1). In this case equation (19) implies

cosh(λ1/2) = 0 whence |λ1|/2 = (2n − 1)π/2. Next, imposing to λ1 to satisfy
the characteristic equation, the neutral manifold follows. The equation of this
manifold is very simple and permitted to easily make explicit the eigenvalue
R (the Rayleigh number), similar to the one from [5].

3 Conclusions

By using three analytical methods the eigenvalue problem associated with a
magnetothermoconvection equilibria problem is solved. They are based either
on the characteristic equation or on the knowledge of the Fourier series ex-
pansions or of another closed forms of the eigenfunctions. In the eigenvalue
equation some factors depending only on the equations and not on the bound-
ary conditions are special. They yield the eigenvalues associated with the
neutral instability for the case of free boundaries.
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