
An. Şt. Univ. Ovidius Constanţa Vol. 17(2), 2009, 167–180

DRIFT-FREE LEFT INVARIANT CONTROL
SYSTEM ON G4 WITH FEWER CONTROLS

THAN STATE VARIABLES

Camelia Pop and Anania Aron

Abstract

An optimal control problem on a special nilpotent4-dimensional Lie

group is discussed and some of its dynamical and geometrical properties

are pointed out.

1 Introduction

Recent work in nonlinear control has drawn attention to drift-free systems
with fewer degrees than state variables. These arise naturally in problems
of motion planning for wheeled robots subject to nonholonomic controls [9],
models of kinematic drift effects in space subjects to appendage vibrations
or articulations [9], the molecular dynamics [6], the autonomous underwater
vehicle dynamics [1] and spacecraft dynamics [10].

The goal of our paper is to study an optimal control problem on a partic-
ular Lie group and to point out some of its dynamical and geometrical prop-
erties. Similar problems have been studied on the Lie group SO(4) (see [2].)
We consider an optimal control problem on a special nilpotent4-dimensional
Lie group, realizing this system as a Hamilton-Poisson system, and then study
the system from some standard Hamilton-Poisson geometry points of view. By
standard Poisson geometry point of view we mean the classical study of the
Lyapunov stability of equilibria by using energy-Casimir type stability tests
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and the study of the existence of periodic solutions by using the Weinstein-
Moser theorem. In the third part of the paper we give an explicit integration
of the system via elliptic functions. In the sixth section of the paper we give
three numerical integrators of the system, and finally the last part of this arti-
cle discusses some numerics associated with the Poisson geometrical structure
of the system.

2 The geometrical picture of the problem

Let G4 be the Lie group given by:

G4 =


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
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Proposition 2.1. The Lie algebra G of G4 is generated by:

A1 =








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0 0 0 0









, A2 =









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,

A3 =









0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0









, A4 =




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and the Lie algebra structure of G is given by the following table:

[.,.] A1 A2 A3 A4

A1 0 −A3 −A4 0
A2 A3 0 0 0
A3 A4 0 0 0
A4 0 0 0 0
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Proposition 2.2. The minus-Lie-Poisson structure on G∗ ≃ (R4)∗ ≃ R4 is
generated by the matrix:

Π− =









0 x3 x4 0
−x3 0 0 0
−x4 0 0 0
0 0 0 0









.

Proposition 2.3. The function C given by:

C =
1

2
x2

4

is a Casimir of our configuration.

Proof: Indeed, we have:

(∇C)tΠ = 0

as required.

An easy computation leads us via Chow’s theorem ([4]) to:

Proposition 2.4. There exist four drift-free left invariant controllable systems
on G, namely:

Ẋ = X(A1u1 + A2u2), (2.1)

Ẋ = X(A1u1 + A2u2 + A3u3), (2.2)

Ẋ = X(A1u1 + A2u2 + A4u4), (2.3)

Ẋ = X(A1u1 + A2u2 + A3u3 + A4u4), (2.4)

where X ∈ G, Ai are the matrix defined above and ui ∈ C∞(R, R), i = 1, 4.

3 An optimal control problem for the system (2.2)

Let J be the cost function given by:

J(u1, u2, u3) =
1

2

∫ tf

0

[

c1u
2
1 (t) + c2u

2
2 (t) + c3u

2
3 (t)

]

dt

c1 > 0, c2 > 0, c3 > 0.

Then we have:
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Proposition 3.1. The controls that minimize J and steer the system (2.2)
from X = X0 at t = 0 to X = Xf at t = tf are given by:

u1 =
1

c1
x1, u2 =

1

c2
x2, u3 =

1

c3
x3,

where x′

is are solutions of:
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1

c2c3
x2x3 +

1
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x3x4

ẋ2 = − 1

c1
x1x3

ẋ3 = − 1

c1
x1x4

ẋ4 = 0.

(3.1)

Remark 3.1. It is easy to see from the equations (3.1) that x4=constant and
so the dynamics (3.1) can be put in the equivalent form:
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
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


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x2x3 +

k

c3
x3

ẋ2 = − 1

c1
x1x3

ẋ3 = − k

c1
x1

(3.2)

The goal of our paper is to study some geometrical and dynamical pro-
perties for the system (3.2).

Proposition 3.2. The dynamics (3.2) has the following Hamilton-Poisson
realization:

(R3,Π,H),

where

Π =





0 x3 k

−x3 0 0
−k 0 0




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and the Hamiltonian

H(x1, x2, x3) =
1

2

(

x2
1

2c1
+

x2
2

2c2
+

x2
3

2c3

)

.

Proof. Indeed, it is not hard to see that the dynamics (3.2) can be put in the
equivalent form:

[ẋ1, ẋ2, ẋ3]
t
= Π · ∇H,

as required. Moreover, the function C given by:

C = −kx2 +
1

2
x2

3

is a Casimir of our configuration. Indeed,

(∇C)tΠ = 0

as desired.

Remark 3.2. The phase curves of the dynamics (3.2) are intersections of

x2
1

2c1
+

x2
2

2c2
+

x2
3

2c3
= const.

with

−kx2 +
1

2
x2

3 = const.,

see the Figure 3.1.
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Figure 3.1: The phase curves of the system (3.2)

Proposition 3.3. The dynamics (3.2) has an infinite number of Hamilton-
Poisson realizations.

Proof. An easy computation shows us that the triples:

(R3, {·, ·}ab,Hcd),

where

{f, g}ab = −∇Cab · (∇f ×∇g), (∀)f, g ∈ C∞(R3, R),

Cab = aC + bH,

Hcd = cC + dH,

a, b, c, d ∈ R, ad − bc = 1,

define Hamilton-Poisson realizations of the dynamics (3.2), as required.

Remark 3.3. The above proposition tell us in fact that the equation (3.2) is
unchanged, so the trajectories of motion in R

3 remain the same when H and
C are replaced by G combinations of H and C.

Proposition 3.4. The dynamics (3.2) can be reduced to the pendulum dy-
namics.

Proof. It is known that H and C are constants of motion, i.e.

x2
1

c1
+

x2
2

c2
+

x2
3

c3
= l2

and

−kx2 +
1

2
x2

3 = p

and then
x2

1

c1
+ (

x2√
c2

+
k

c1

√
c2)

2 = l2 +
c2k

2

c2
1

= r2.

If we take now:






x1 = r
√

c1cos θ

x2 = r
√

c2sin θ − kc2

c1
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then

ẋ2 =

√

c2

c1
x1 · θ̇

and so:

θ̇ = − 1√
c1c2

x3.

Differentiating again, we obtain:

··

θ =
kr

c1
√

c2
cos θ

which is nothing else than the pendulum dynamics, as required.

4 Stability

It is not hard to see that the equilibrium states of our dynamics (3.2) are:

eM
1 = (0,M, 0), M ∈ R,

eM
2 = (0,−kc2

c3
,M), M ∈ R.

First, let us recall very briefly the definitions of spectral stability and nonli-
near stability of an equilibria point of an Hamilton-Poisson system. For more
information, see [7]. The laws of dynamics are usually presented as equations
of motion which we write in the abstract form: ẋ = f(x), where f : D → R is
a C1 - map on an open set D ∈ R

n.

Definition 4.1. An equilibrium state xe is said to be nonlinear stable if for
each neighborhood U of xe in D there is a neighbourhood V of xe in U such
that trajectory x(t) initially in V never leaves U.

Definition 4.2. An equilibrium state xe is said to be spectral stable if all
the eigenvalues of the linearized matrix of the system have negative real parts.

About the spectral stability of these equilibrium states, we have the fol-
lowing result:

Proposition 4.1. (i) The equilibrium states eM
1 , M ∈ R

∗ are spectrally
stable if kM > 0 and unstable if kM < 0.

(ii) The equilibrium states eM
2 , M ∈ R

∗ are spectrally stable for any M ∈ R∗.
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We can now pass to discuss the nonlinear stability of the equilibrium states
eM
1 and eM

2 , M ∈ R.

Proposition 4.2. (i) The equilibrium states eM
1 , M ∈ R

∗ are nonline-
arlly stable if kM > 0.

(ii) The equilibrium states eM
2 , M ∈ R

∗ are nonlinearlly stable for any M ∈
R.

Proof. We shall make the proof using energy-Casimir method (see [3]). Let

Hϕ = H + ϕ(C) =
x2

1

2c1
+

x2
2

2c2
+

x2
3

2c3
+ ϕ(−kx2 +

1

2
x2

3)

be the energy-Casimir function, where ϕ : R → R is a smooth real valued
function defined on R.

Now, the first variation of Hϕ is given by:

δHϕ =
x1

c1
δx1 +

x2

c2
δx2 +

x3

c3
δx3 +

·

ϕ ·(−kδx2 + x3δx3),

where
·

ϕ =
∂ϕ

∂(−kx2 +
1

2
x2

3)
.

This equals zero at the equilibrium of interest if and only if

·

ϕ(−kM) =
M

kc2
.

The second variation of Hϕ is given by:

δ2Hϕ =
1

c1
(δx1)

2 +
1

c2
(δx2)

2 +
1

c3
(δx3)

2 +
··

ϕ ·(−kδx2 + x3δx3)
2 +

·

ϕ ·(δx3)
2,

Since kM > 0 and having choosing ϕ such that:


















·

ϕ(−kM) =
M

kc2

··

ϕ(−kM) <
1

kc2

we can conclude that the second variation of Hϕ at the equilibrium of interest
is positive define and thus e1 is nonlinearlly stable.

Similar arguments lead us to the second result.
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5 The existence of periodic solutions

Proposition 5.1. Near eM
1 = (0,M, 0), M ∈ R

∗, the reduced dynamics has,
for each sufficiently small value of the reduced energy, at least 1-periodic solu-
tion whose period is close to:

2π
√

c1c2c3√
k2c2 + kMc3

.

Proof. Indeed, we have successively:

(i) The restriction of our dynamics (3.2) to the coadjoint
orbit:

−kx2 +
1

2
x2

3 = −kM (5.1)

gives rise to a classical Hamiltonian system.

(ii) The matrix of the linear part of the reduced dynamics has purely
imaginary roots. More exactly:

λ2,3 = ±i

√
k2c2 + kMc3√

c1c2c3
.

(iii) span(∇C(eM
1 )) = V0,

where

V0 = ker(A(eM
1 )).

(iv) The smooth function F ∈ C∞(R3, R) given by:

F (x1, x2, x3) =
x2

1

2c1
+

x2
2

2c2
+

x2
3

2c3
+

M

kc2
(−kx2 +

x2
3

2
)

has the following properties:

• It is a constant of motion for the dynamics (3.2).

• ∇F (eM
1 ) = 0.

• ∇2F (eM
1 )

∣

∣

W×W
> 0,

where

W := ker dC(eM
1 ) = spanR









0
1
0







 .

Then our assertion follows via the Moser-Weinstein theorem with zero
eigenvalue, see for details [4].
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6 Numerical integration of the dynamics (3.2)

It is easy to see that for the equations (3.2), Kahan’s integrator can be written
in the following form:











































xn+1
1 − xn

1 =
h

2c2c3
(xn+1

3 xn
2 + xn+1

2 xn
3 ) +

hk

2c3
(xn+1

3 + xn
3 )

xn+1
2 − xn

2 = − h

2c1
(xn+1

1 xn
3 − xn+1

3 xn
1 )

xn+1
3 − xn

3 = − hk

2c1
(xn+1

1 + xn
1 )

(6.1)

A long but straightforward computation or alternatively, by using MATH-
EMATICA, lead us to:

Proposition 6.1. Kahan’s integrator (6.1) has the following properties:
(i) It is not Poisson preserving.
(ii) It does not preserve the Casimir C of our Poisson configuration (R3,Π).
(iii) It does not preserve the Hamiltonian H of our system (3.2).

We shall discuss now the numerical integration of the dynamics (3.2) via
the Lie-Trotter integrator [11].

To begin with, let us observe that the Hamiltonian vector field XH splits
as follows:

XH = XH1
+ XH2

+ XH3
.

where

H1 =
1

2c1
x2

1, H2 =
1

2c3
x2

2, H3 =
1

2c3
x2

3.

Following [11], we obtain the Lie-Trotter integrator:




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



































xn+1
1 = xn

1 +
k

c3
txn

3

xn+1
2 =

ak

2
t2xn

1 + xn
2 + (

ak2

2c3
t3 +

abk

2
t2 − at)xn

3

xn+1
3 = −ktxn

1 − (
k2

c3
+ bk)t2xn

3

(6.2)

Now, a direct computation or using MATHEMATICA leads us to:
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Proposition 6.2. The Lie-Trotter integrator (6.2) has the following pro-
perties:

(i) It preserves the Poisson structure Π.

(ii) It preserves the Casimir C of our Poisson configuration (R3,Π).

(iii) It doesn’t preserve the Hamiltonian H of our system (3.2).

(iv) Its restriction to the coadjoint orbit (Ok, ωk), where

Ok = {(x1, x2, x3) ∈ R
3| − kx2 +

1

2
x2

3 = const.}

and ωk is the Kirilov-Kostant-Souriau symplectic structure on Ok gives rise
to a symplectic integrator.

Remark 6.1. If we compare this method to the 4th-step Runge-Kutta method
we can see that Lie-Trotter integrator and Kahan’s integrator give us a weak
approximation of our dynamics. In fact, Lie-Trotter integrator has failed in
this example. This is an open problem which is responsable for this. However,
Kahan’s integrator and the Lie-Trotter integrator have the advantage of being
easier implemented, see Figures 6.1, 6.2 and 6.3.
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Figure 6.1: The 4th-step Runge-Kutta
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Figure 6.2: The Kahan integrator

Figure 6.3: The Lie-Trotter integrator



DRIFT-FREE LEFT INVARIANT CONTROL

SYSTEM ON G4 WITH FEWER CONTROLS THAN STATE VARIABLES 179

7 Conclusion

The paper presents the left invariant controllable systems on a particular
Lie group; this arises naturally from the study of the car’s dynamics for which
the Lie group G4 represents the phase space ([11]). In addition, we have
studied the existence of the periodic orbits around the nonlinear stable states
and a comparison between three numerical integration methods. Despite the
simplicity of the studied system, we have seen that two of the three methods
give us a week approximation of the movement trajectory, unlike some other
examples for whitch all the three methods provide the same results (SL(2, R),
3-Dimensional Toda Laticce.)
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