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Post algebras in 3-rings

Sergiu Rudeanu

To Professor, Dorin Popescu, at his 60th anniversary

Abstract

A unitary commutative ring of characteristic 3 and 3-potent is called
a 3-ring. We prove that every polynomial of a 3-ring is uniquely deter-
mined by its restriction on the subring {0, 1, 2} (the Verification Theo-
rem). Then we establish an isomorphism between the category of 3-rings
and the category of Post algebras of order 3.

1 Introduction

The concept of a p-ring, where p is a prime, was defined by McCoy and
Montgomery [3] as a commutative ring satisfying the identities px = 0 and
xp = x. They proved that every finite p-ring is a direct product of fields Zp,
and every p-ring is isomorphic to a subring of a direct product of fields Zp. So
p-rings generalize Boolean rings, for which p = 2.

Moisil [4] proved that every unitary 3-ring can be made into a bounded
distributive lattice which, in the case of the ring Z3, is a centred 3-valued
Lukasiewicz(-Moisil) algebra. Note that centred Lukasiewicz-Moisil algebras
coincide with Post algebras.

In the paper [7] we determined all the rings that can be constructed on a
Post algebra of arbitrary order r by Post functions. All these rings satisfy the
identities rx = 0 and xr = x. In the case r = 3 exactly one of them is term
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equivalent to the Post algebra, just like a Boolean ring is equivalent to the
Boolean algebra having the same support.

In the present paper we lift the above equivalence to an isomorphism be-
tween the category 3Post of Post algebras of order 3 and the category 3Rng
of 3-rings. The latter are understood as commutative unitary rings satisfying
the identities

(1) x + x + x = 0 ,

(2) x3 = x .

Since it is proved in [3] that every p-ring can be embedded into a unitary
p-ring, our definition is essentially the same as the one given in [3].

To obtain the desired isomorphism we need a preparation: every 3-ring R
includes Z3 as a subring and two polynomials of R coincide if and only if their
restrictions to Z3 coincide. We call this result the Verification Theorem for
3-rings (corollary of Theorem 1) and it will be the crucial tool for our main
results, just like the Verification Theorem for Post algebras was the crucial
tool in [7].

It is easy to see (Proposition 2) that Theorem 3 in [7] yields in fact a
functor F : 3Post −→ 3Rng, while in this paper we construct a functor
G : 3Rng −→ 3Post (Proposition 3) and prove that F and G establish an
isomorphism of categories (Theorem 2).

2 The Verification Theorem

Let (R, +, ·, 0, 1) be a 3-ring.

Lemma 1 The element

(3) 2 = 1 + 1

satisfies

(4) 2 + 1 = 0 ,

(5) 2 + 2 = 1 ,

(6) 22 = 1 .

Proof: Properties (4) and (5) follow from 1 + 1 + 1 = 0. Then (3) implies
22 = 2 + 2 = 1. �

Proposition 1 The set E = {0, 2, 1} is a subring isomorphic to Z3.



Post algebras in 3-rings 85

Proof: Immediate by Lemma 1. �

Lemma 2 Every polynomial p : R −→ R can be written in the form p(x) =
ax2 + bx + c, the coefficients being uniquely determined by

(7) a = 2p(1) + 2p(2) + 2p(0) , b = 2p(1) + p(2) , c = p(0) .

Proof: The existence of the representation follows from (2). Taking in turn
x := 0, 2, 1, we obtain

p(0) = c ,

p(2) = a + 2b + c ,

p(1) = a + b + c ,

hence 2p(1) + p(2) = p(2) − p(1) = b, therefore a = p(1) + 2b + 2c, which is
the first equality (7). �

Theorem 1 Every polynomial p : Rn −→ R is uniquely determined by its
restriction to En.

Proof: For n = 1 this follows from Lemma 2. At the inductive step n−1 �→ n
we fix momentarily x2, . . . , xn, apply again Lemma 2 and obtain

(8)
p(x1, . . . , xn) = (2p(1, x2, . . . , xn) + 2p(2, x2, . . . , xn) + 2p(0, x2, . . . , xn))x2

1+

+(2p(1, x2, . . . , xn) + p(2, x2, . . . , xn))x1 + p(0, x2, . . . , xn) ,

then let x2, . . . , xn vary arbitrarily, so that (8) holds for all x1, x2, . . . , xn. Now
if p′ is a polynomial which coincides with p on En, then for each a ∈ E,

(9) p(a, x2, . . . , xn) = p′(a, x2, . . . , xn)

by the inductive hypothesis. Finally we apply (8) to p and p′, taking into
account (9); this yields p = p′. �

Corollary 1 (Verification Theorem) A polynomial identity p(x1, . . . , xn) =
q(x1,
. . . , xn) holds in R if and only if it is verified on E.

3 The categories 3Post and 3Rng are isomorphic

We recall that a Post algebra of order 3 is an algebra (P,∨,∧,(0) ,(1) ,(2) , 0, e, 1)
of type (2,2,1,1,1,0,0,0) such that (P,∨,∧, 0, 1) is a bounded distributive lattice
and the following identities hold:



86 Sergiu Rudeanu

(10) x(0) ∧ x(1) = x(0) ∧ x(2) = x(1) ∧ x(2) = 0 ,

(11) x(0) ∨ x(1) ∨ x(2) = 1 ,

(12) x = (e ∧ x(1)) ∨ x(2) .

For the general concept of Post algebra of order r the reader is referred to [2],
[8], [1], [6] or [7]. Our presentation of Post algebras in the monograph [6] and
the paper [7]∗ is strongly influenced by the book [8].

Let 3Post and 3Rng denote the category of Post algebras of order 3 and
the category of 3-rings, respectively. The morphisms are defined as prescribed
by universal algebra.

Proposition 2 A functor F : 3Post −→ 3Rng is defined by

(13) F (P,∨,∧,(0) ,(1) ,(2) , 0, e, 1) = (P,⊕,�, 0, 1) , Fu = u ,

where

(14)
x ⊕ y = (e ∧ ((x(2) ∧ y(2)) ∨ (x(0) ∧ y(1)) ∨ (x(1) ∧ y(0))))∨

∨(x(1) ∧ y(1)) ∨ (x(0) ∧ y(2)) ∨ (x(2) ∧ y(0)) ,

(15) x � y = (e ∧ ((x(1) ∧ y(2)) ∨ (x(2) ∧ y(1)))) ∨ (x(1) ∧ y(1)) ∨ (x(2) ∧ y(2)).

Proof: The fact that F is correctly defined on objects is part of Theorem
3 in [7]. It follows from (14) and (15) that if u : P −→ P ′ is a morphism in
3Post, then u : FP −→ FP ′ is a morphism in 3Rng. �

Proposition 3 A functor G : 3Rng −→ 3Post is defined by

(16) G(R, +, ·, 0, 1) = (R,∨,∧,(0) ,(1) ,(2) , 0, 2, 1) , Gv = v ,

where

(17) x ∨ y = 2x2y2 + x2y + xy2 + xy + x + y ,

(18) x ∧ y = x2y2 + 2x2y + 2xy2 + 2xy ,

(19) x(0) = 2x2 + 1 ,

(20) x(1) = 2x2 + x ,

(21) x(2) = 2x2 + 2x .

∗In [7] we have denoted meet by · or concatenation and the disjunctive components by
x0, x1, x2.
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Comment Moisil [4] proved that formulas (17), (18) make a 3-ring into a
distributive lattice which, for the ring Z3, is a centred 3-valued Lukasiewicz(-
Moisil) algebra. Centred Lukasiewicz-Moisil algebras coincide with Post alge-
bras; cf. [1], Corollary 4.1.9.
Proof: We have to prove that the algebra in (16) is a bounded distributive
lattice which satisfies (17)-(21). A well-known theorem due to Sholander [9]
shows that the former property is equivalent to the axioms

(22) x ∧ (x ∨ y) = x ,

(23) x ∧ (y ∨ z) = (z ∧ x) ∨ (y ∧ x) .

In view of the Verification Theorem it suffices to check properties (10),(11),(12),
(22),(23) on the subset E = {0, 2, 1}.

Note first that (17) and (18) imply the identities

x ∨ 0 = x , x ∧ 0 = 0 ,

x ∨ 1 = 2x2 + x2 + x + x + x + 1 = 1 ,

x ∧ 1 = x2 + 2x2 + 2x + 2x = x ,

2 ∨ 2 = 2 + 2 + 2 + 1 + 2 + 2 = 2 ,

2 ∧ 2 = 1 + 1 + 1 + 2 = 2 ,

therefore

(24) a ∨ b = max(a, b) , a ∧ b = min(a, b) (∀ a, b ∈ E) .

In other words, (E,∨,∧, 0, 1) is the chain 0 < 2 < 1. Since every chain is a
distributive lattice, properties (22), (23) are verified on E.

Furthermore, it follows easily from (19)-(21) that

(25.1) 0(0) = 1 , a(0) = 0 for a ∈ {1, 2} ,

(25.2) 2(1) = 1 , a(1) = 0 for a ∈ {0, 1} ,

(25.3) 1(2) = 1 , a(2) = 0 for a ∈ {0, 2} .

Clearly (24) and (25) prove (11), while suitable combinations prove (10), for
instance

0(0) ∧ 0(1) = 2(0) ∧ 2(1) = 1(0) ∧ 1(1) = 0 ,

etc. From
(2 ∧ 0(1)) ∨ 0(2) = 0 ,
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(2 ∧ 2(1)) ∨ 2(2) = 2 ∨ 0 = 2 ,

(2 ∧ 1(1)) ∨ 1(2) = 0 ∨ 1 = 1 ,

we see that property (12) with e = 2 holds on E.
We have thus proved that the algebra in (16) is a Post algebra of order 3.

Finally it follows from (17), (18) that if v : R −→ R′ is a morphism in 3Rng,
then v : GR −→ GR′ is a morphism in 3Post. �

Theorem 2 The functors F and G establish an isomorphism.

Proof: The relation GF = 13Post is a paraphrase of Theorem 4 in [7]. It
remains to prove FG = 13Rng. This is clear on morphisms.

Let (R, +, ·, 0, 1) be a 3-ring. The algebra GR is given by formulas (16)-
(21), hence the ring FGR is constructed by formulas (13)-(15) with P = R
and e = 2. We must prove that FGR = R, which amounts to x ⊕ y = x + y
and x � y = x · y.

Since 0 and 1 are the zero and unit of the ring FGR, we have

(26) x ⊕ 0 = x , x � 1 = x , x � 0 = 0 .

Then for every a, b ∈ E we use (14), (15), (24), (25) and obtain

a ⊕ 1 = (2 ∧ a(2)) ∨ a(0) ,

a ⊕ 2 = (2 ∧ a(0)) ∨ a(1) ,

a � 2 = (2 ∧ a(2)) ∨ a(1) ,

which implies further

(27) 2 ⊕ 1 = 0 , 1 ⊕ 1 = 2 ∨ 0 = 2 , 2 ⊕ 2 = 1 , 2 � 2 = 1 .

Relations (26), (27) show that a ⊕ b = a + b and a � b = a · b for every
a, b ∈ E. In view of the Verification Theorem, this implies x ⊕ y = x + y and
x � y = x · y for all x, y ∈ R. �
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