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MAXIMAL COHEN-MACAULAY

MODULES OVER HYPERSURFACE RINGS

Viviana Ene

Abstract

This paper is a brief survey on various methods to classify maximal
Cohen-Macaulay modules over hypersurface rings. The survey focuses
on the contributions in this topic of Dorin Popescu together with his
collaborators.

1 Introduction

Let k be a field, Y = {Y1, Y2, . . . , Yn} be a set of indeterminates and let R =
k[[Y ]]/J, where J is an ideal of k[[Y ]]. We are mainly interested in the study
of maximal Cohen-Macaulay modules over hypersurfaces, that is J = (f), for
some nonzero and non invertible power series f.
A nonzero finitely generatedR−moduleM is maximal Cohen-Macaulay over R
(briefly, MCM(R)-module), if depth M=dim R. (For more details on Cohen-
Macaulay rings and modules see [BH], [Y].) These modules preserve many
properties from the Artinian case. Note that if dim R = 0, then all finitely
generated modules over R are maximal Cohen-Macaulay. For instance, if R is
an isolated singularity, that is Rp is regular for any prime ideal p �= (Y ), then
there exist almost split sequences and the first Brauer-Thrall conjecture holds
in the category MCM(R).
For any finitely generated R−module M, its nth syzygy, ΩnR(M), that is the
nth kernel in a free resolution of M :

0 → ΩnR(M) → Fn−1 → . . .→ F1 → F0 →M,
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is MCM for n ≥ dim R. This implies that every finitely generated R−module
can be approximated modulo a part of its free resolution by a MCM(R)-
module.
If R is a hypersurface ring, then, according to Eisenbud [Ei], the MCM(R)-
modules are described in terms of matrix factorizations. A matrix factorization
of a f ∈ k[[Y ]], Y = {Y1, . . . , Yn} is a pair of d×d matrices (ϕ, ψ) with entries
in k[[Y ]], such that ϕψ = ψϕ = fId. If we write − for the reduction modulo
(f), then a matrix factorization (ϕ, ψ) yields a periodic complex of R–modules:

. . .
ψ̄→ Rd

ϕ̄→ Rd
ψ̄→ Rd

ϕ̄→ Rd → Coker(ϕ̄) → 0,

which is exact since f is regular in k[[Y ]]. Therefore, we get a free resolution
of M = Coker(ϕ̄) over R. Let M be a MCM(R)–module. If its periodic resolu-
tion F over R comes from a matrix factorization (ϕ, ψ) of f over k[[Y ]], then F

is minimal if and only if (ϕ, ψ) is reduced, that is Imϕ, Imψ ⊂ mk[[Y ]], where
m is the maximal ideal of k[[Y ]]. In this case M has no free summands. By
[Ei] there is a bijection between the equivalence classes of reduced matrix fac-
torizations of f over k[[Y ]] and the isomorphism classes of MCM(R)–modules
without free summands.
The paper is organized as follows. In Section I we are concerned with exten-
sions of Knörrer Periodicity Theorem which are applied in the study of the
structure of the MCM modules over the hypersurface of type (Y t1 +Y 3

2 + . . .+
Y 3
n ). In Section 2 we take into consideration the graded MCM modules over

the rings k[Y1, . . . , Yn]/(Y 3
1 + Y 3

2 + . . . + Y 3
n ), for n = 3, 4. The case n = 3

is completely described in the paper [LPP]. The description is mainly based
on Atiyah’s theory of the vector bundles classification over elliptic curves. A
different approach is used for the case n = 4 in [BEPP]. In the last section
we present a new method which has been applied in the study of the MCM
modules over a ring of type A[[x]]/(xn), where A is a discrete valuation ring.

2 Extensions of Knörrer Theorem

Suppose f = Y sn + h, where s ≥ 2 and 0 �= h ∈ k[[Y1, Y2, . . . , Yn−1]] and let
R = k[[Y1, Y2, . . . , Yn]]/(f), A = k[[Y1, . . . , Yn−1]]/(h).

Question 2.1. Is it possible to describe the MCM(R)-modules in connection
with the MCM modules over A?

For s = 2, an affirmative answer is given by the well–known

Theorem 2.2 ([Kn]). If char k �= 2, then:
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(i) If N is a MCM(R)-module without free summands, then

Ω1
R(N/YnN) ∼= N ⊕ Ω1

R(N).

(ii) Every indecomposable MCM(R)-module is a direct summand in a module
of type Ω1

R(M), for an indecomposable maximal Cohen-Macaulay module
M over A.

(ii) follows from (i) and it may be used to describe inductively MCM-modules
over f, for special f. Knörrer Periodicity Theorem is one of the main appli-
cations of Eisenbud’s Matrix Factorization Theorem and the result was com-
pleted with the characteristic two case by Pfister and Popescu in [PP2].

This theorem was extended for an arbitrary s in the following

Theorem 2.3 ([Po]). If s is not a multiple of char k, then every MCM(R)-
module N without free summands is a direct summand in Ω1

R(N/Y s−1
n N).

Moreover, N/Y s−1
n N is a deformation of the MCM(A)-module N/YnN to

R/(Y s−1
n ).

We recall that an R̃ = R/(Y s−1
n )−module L is a deformation of an A−module

M to R̃ if
L/YnL ∼= M and TorR̃i (A,L) = 0, for i ≥ 1.

The case f = Y sn +h may be considered as a special type of a general problem:
How can we relate the study of MCM-modules over k[[Y, Z]]/(h +
g) with the MCM modules over k[[Y ]]/(h) and k[[Z]]/(g)? Here Y =
{Y1, . . . , Ym}, Z = {Z1, . . . , Zn} are indeterminates and h ∈ k[[Y ]], g ∈ k[[Z]]
are two nonzero and non invertible power series. This is called a Thom-
Sebastiani problem after the name of the authors who have studied for the
first time this kind of questions.
The above problem has been studied by Herzog and Popescu in [HP]. They
proved that if the ideal ∆g, generated in k[[Z]] by the partial derivatives
∂g/∂Zi is (Z)− primary, then, given an MCM-moduleN over S := k[[Y, Z]]/(h+
g), we have that N/∆gN is a deformation to S/∆gS of the module N/ZN ,
which is MCM over k[[Y ]]/(h) and N is a direct summand of ΩnS(N/∆gN) ⊕
Ωn+1
S (N/∆gN). In the case we have considered, that is f = h + Y sn , h ∈

k[[Y1, . . . , Yn−1]], this theorem leads to the result obtained by Popescu in [Po].
In particular, if s = 3, then any indecomposable MCM(R)-module is a direct
summand in the first syzygy module Ω1

R(T ) of an indecomposable infinites-
imal deformation T of a MCM-module over A. Moreover, this module T is
liftable to R/(Y 4

n ), that is there exists a lifting of T to R/(Y 4
n ). Using this pro-

cedure one may describe MCM-modules over hypersurfaces f of type Y t1 +Y 3
2
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since we may reduce to compute all the deformations of the finitely generated
k[[Y1]]/(Y t1 )− modules to k[[Y1, Y2]]/(Y t1 , Y 2

2 ) which are liftable to R/(Y 4
2 ).

This is still difficult. Along this idea we have the following:

Theorem 2.4. Let 1 ≤ i ≤ j ≤ t be two positive integers and Mij be the
class of all MCM(R)-modules N such that N/Y2N is a direct sum of copies of
Pi = k[[Y1]]/(Y i1 ), Pj = k[[Y1]]/(Y

j
1 ). Then the following statements are true.

(i) If i + j �= t, then Mij is of finite representation Cohen-Macaulay type
and all the indecomposable modules of Mij are described by some matrix
factorizations of size 4.

(ii) If i + j = t, t > 5, t �= 3i, then Mij is of infinite Cohen-Macaulay
representation type.

The first part of this theorem was proved in [EP1] and the second part was
proved in [PP1]. An attempt to apply iteratively the method used for Y t1 +Y 3

2

to hypersurfaces of type Y t1 +Y 3
2 +. . .+Y 3

r , for r ≥ 2, has the disadvantage that
usually we are not able to describe completely all the MCM-modules in the
case r−1. The optimal generalization of Knörrer theorem for hypersurfaces of
type f = Y t1 +Y 3

2 + . . .+Y 3
r , r ≥ 2, is given in [OP1], [OP2] as a consequence

of a more general result. It is showed that every indecomposable MCM(R)-
module N (we denoted R = k[[Y ]]/(f)) is a direct summand in ΩrR(L), for
a certain lifting L of a k[[Y1]]/(Y t1 )−module to R̃ := R/(Y 2

2 , . . . , Y
2
r ), which

can be chosen to be indecomposable and weakly liftable, that is liftable to
R/(Y 2

2 , . . . , Y
2
r )2. As in the case r = 1, the correspondence

N → R̃⊗R N,

gives ”almost” an injection from the isomorphism classes of MCM(R)-modules
to the isomorfism classes of liftings of the finitely generated k[[Y1]]/(Y t1 )−modules
to R̃, in the sense that if R̃ ⊗R N is isomorphic to R̃ ⊗R N ′ for some inde-
composable MCM(R)-modules N,N ′, then either N ∼= N ′, or N ∼= Ω1

R(N ′).
Given a matrix factorization of the module L over R̃, the authors define the
matrix factorization of the MCM(R)-module ΩrR(L) by a construction involv-
ing a countably iterated mapping cone. They also give conditions for L to
be weakly liftable. Thus, using this technique, we should be able to de-
scribe the indecomposable weakly liftable deformations of the finitely gener-
ated k[[Y1]]/(Y t1 )−modules to R̃. From a theoretical point of view, the problem
is clear, but any practical attempt to describe these deformations is very hard.
Even for the case r = 2 the computations of weakly liftable deformations of
the k[[Y1]]/(Y t1 )−modules which are direct sums of copies of k[[Y1]]/(Y i1 ) lead
to very hard calculations with matrix equations over k[[Y1]]/(Y i1 ).
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3 Maximal graded Cohen-Macaulay modules over hyper-
surfaces of type Y 3

1 + Y 3
2 + . . . + Y 3

n

Let Rn := k[Y1, . . . , Yn]/(f), where fn = Y 3
1 + Y 3

2 + . . . + Y 3
n and k is an

algebraically closed field of characteristic 0. Using the classification of vector
bundles over elliptic curves obtained by Atiyah [At], C. Kahn gives a ”geo-
metrical” description of the graded MCM-modules over R3 and also describe
the Auslander-Reiten quivers of MCM(R3) [K]. His method does not give the
matrix factorizations of the indecomposable MCM(R3)-modules. In [LPP],
Laza, Pfister and Popescu use Atiyah classification to describe the matrix
factorizations of the graded, indecomposable, reflexive modules over R3. The
description depends on two discrete invariants, the rank and the degree of the
bundle, and on a continuous invariant, the points of the curve Z = V (f3).
They give canonical normal forms for the matrix factorizations of these mod-
ules of rank one and show how one may obtain the modules of rank ≥ 2 using
SINGULAR [GPS]. Since over the completion k[[Y1, Y2, Y3]]/(f3) of R3, every
reflexive module is gradable, the authors obtain a description of the MCM-
modules over k[[Y1, Y2, Y3]]/(f3).

It is of high interest to classify vector bundles, in particular ACM bundles (i.e.
those which corresponds to MCM modules) over the singularities of higher
dimension. In the paper [EP2] the matrix factorizations which define the
graded MCM modules of rank one over f4 = Y 3

1 +Y 3
2 +Y 3

3 +Y 3
4 are described.

There is a finite number of such modules which correspond to 27 lines, 27
pencils of quadrics and 72 nets of twisted cubic curves lying on the surface
Y = V (f4) ⊂ P

3. From a geometrical point of view, the problem is easy, but
the effective description of the matrix factorizations is difficult and SINGULAR
has been intensively used.
The study of the graded MCM modules over R4 is continued in [BEPP] for
the modules of rank two. The complete description of these modules which
are orientable is given using a technique based on the results of Herzog and
Kühl [HK] concerning the Bourbaki sequences.
For the rest of this section we shall denote S = k[Y1, . . . , Y4] and f = f4. An
exact sequence of R–modules

0 → F →M → I → 0, (3.1)

where F is free, M is a MCM(R)–module and I is an ideal of R, is called a
Bourbaki sequence. If µ(M) = µ(I)+rankF, the above sequence is called tight
(µ(E) denotes the minimal number of generators of the R–module E). The
Bourbaki sequences play an important role in the study of the MCM modules
over hypersurface rings (see [HK], [BEPP]). If M is an MCM(R)–module,
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then M is torsion–free. Then, by [B], there exists a finite free submodule
F ⊂ M such that M/F is isomorphic with an ideal I of R and the canonical
map F ⊗ k →M ⊗ k is injective, that is the Bourbaki sequence

0 → F → M → I → 0

is tight. In the case when rankM = 2, the above sequence becomes

0 → R →M → I → 0 (3.2)

and
µ(M) = µ(I) + 1.

If M is orientable, then the ideal I in the above sequence is Gorenstein of
codimension 2.
According to Herzog and Kühl [HK], any non–free graded orientable MCM(R)–
module of rank two must have 4 or 6 generators. With the help of the
Buchsbaum–Eisenbud theorem, it is obtained a general description of the
MCM orientable modules of rank two. The modules are given by skew–
symmetric matrix factorizations. Let ϕ = (aij)1≤i,j≤2s be a generic skew–
symmetric matrix, that is

aii = 0, aij = −aji, for all i, j = 1, . . . , 2s.

Then
det(ϕ) = pf(ϕ)2,

where pf(ϕ) denotes the Pfaffian of ϕ (see [Bo1] or [BH]). Set

ψ =
1

pf(ϕ)
B,

where B is the adjoint matrix of ϕ. Then

ϕψ = ψϕ = pf(ϕ) Id2s .

Theorem 3.1. ([BEPP, Theorem 6]) Let ϕ be a homogeneous skew–symmetric
matrix over S of order 4 or 6 such that detϕ = f2. Then the cokernel of
ϕ defines a graded MCM R–module M of rank 2. Conversely, each non–
free graded orientable MCM R–module M of rank 2 is the cokernel of a map
given by a skew–symmetric homogeneous matrix ϕ over S of order 4 or 6,
whose determinant is f2. ϕ together with ψ defined above forms the matrix
factorization of M .
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The matrix factorizations of the graded, orientable, rank 2, 4–generated MCM
modules are parameter families indexed by the points of the surface Y = V (f),
that is, two–parameter families and some finite ones in bijection with rank 1
MCM modules described in [EP2]. Here an important fact is that two Goren-
stein ideals of codimension 2 define the same MCM module via the associated
Bourbaki sequence if and only if they belong to the same even linkage class.
The description of graded, rank 2, 6-generated MCM modules is different from
what one could expect, since a part of them, given by Gorenstein ideals de-
fined by 5 general points on Y = V (f), forms a 5-parameter family (see [Mig],
[IK]). The complete description in the 6–generated case has been done with
the help of SINGULAR.

Now we pass to the study of non-orientable MCM(R)–modules. The idea is
to find a method similar with that used in the case of the orientable modules.
The following propositions are slightly generalizations of the corresponding
results in [BEPP].

Proposition 3.2. Let B = A/(g), where A = k[x1, . . . , xd+1], d ≥ 2 and
g ∈ A is a prime homogeneous polynomial of degree e. Let M be a graded non–
orientable MCM module over B of rankM = r ≥ 2. Then M is isomorphic
with the second syzygy of a graded ideal I of B with dimB/I = d − 1 and
depthB/I = d− 2. Moreover, µ(M) = µ(I) + r − 1.

Proof. Since M is torsion–free, as above, there exists a finite free submodule
F ⊂ M such that M/F is isomorphic with an ideal I of B and the canonical
map F/mF →M/mM is injective. Thus we get the following exact sequence:

0 → F →M → I → 0. (3.3)

Since M is non–orientable, by [HK], codim I = 1, that is dimR/I = d − 1
and from (3.3) it follows that depthR/I = d − 2. Also from (3.3) we get
Ω2
R(M) 
 Ω2

R(I) and so M 
 Ω2
R(I). Applying ⊗RR/m to (3.3), we obtain

the exact sequence

0 → kr−1 →M/mM → I/mI → 0,

which implies µ(M) = µ(I) + r − 1.

In our special case we get

Corollary 3.3. ([BEPP, Proposition 12]) Each graded, non–orientable, rank
2, s–generated MCM R–module is the second syzygy Ω2

R(I) of an (s − 1)–
generated graded ideal I ⊂ R with

depthR/I = 1 and dimR/I = 2.
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In the above settings, that is B = A/(g), A = k[x1, . . . , xd+1], d ≥ 2, and
g ∈ A being a prime homogeneous polynomial of degree e, let M be a graded
non–orientable MCM module M over B of rank r ≥ 2 and (ϕ, ψ) be the matrix
factorization which defines M, that is M 
 Coker(ϕ). Then

0 → Aµ(M) �ϕ Aµ(M) → 0

is a minimal A–resolution of M. Using the Bourbaki sequence (3.3), we get
the following commutative diagram

0 0

Ar−1 Aµ(M)

Ar−1 Aµ(M)

0 Br−1 M I 0

0 0

� �

�

νg

�

�

ϕ

�

�σ

�
�

�

�

�

� �

As in [HK], from this diagram, we obtain the minimal free resolution of I over
A :

0 → Ar−1 �u3
Aµ(M) �u2

Aµ(M)−r+1 �u1
I → 0. (3.4)

Let J ⊂ A be a graded ideal such that g ∈ J and I = J/(g). Then depth A
J =

depth B
I = d− 1. Let us assume that g ∈ mJ, and let

0 → As3 �d3 As2 �d2 As1 �d1 J → 0

be the minimal free A–resolution of J. Then the following sequence
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0 � As3 �

(
d3
0

)
As2+1 �(d2,v)

As1 �d̃1 I � 0

is exact and forms a minimal free A–resolution of I. Here v : A � As1

is an A–linear map such that jd1v = g IdA, where j : J � A is the in-
clusion. Comparing with (3.4) it results: s3 = r − 1, s2 = µ(M) − 1 and
s1 = µ(I) = µ(M) − r + 1.

Proposition 3.4. Let I = J/(f), J being a graded ideal of A with g ∈ J,
such that dimR/I = d − 1 and depthR/I = d − 2. We suppose that g is not
a minimal generator of J. If µ(I) = s and rank(Ω2

R(I)) = r, then M = Ω2
R(I)

is a graded non–orientable MCM module over R with µ(M) = s+ r − 1.

Proof. Let
0 → As3 �d3 As2 �d2 As1 �d1 J → 0

be the minimal free A–resolution of J.

Since g is not a minimal generator of J, as in [BEPP], we get the following
exact sequence

Bs3+s1 �
(h̄|d̄3

0
)

Bs2+1 �(d̄2,v̄)
Bs1 �d̄1 I � 0,

which is part of a minimal free B–resolution of I. Here v : A � As1 is an
A–linear map such that jd1v = g IdA, where j : J � A is the inclusion, d̃1

is the composite map As1 �d1 J � J/(f) = I and h : As1 � As2+1 is an
A–linear map such that (d2, v)h = g IdSs1 . The above sequence shows that
Ω2
B(I) is the image of the first map. It follows

s3 + s1 = s2 + 1.

From the exact sequence

0 → Ω2
B(I) → Bs2+1 → Bs1 → I → 0,

we obtain r− (s2 + 1) + s1 − 1 = 0. Since s1 = s, it follows s2 = r+ s− 2 and
µ(M) = s3 + s = r + s− 1.

Coming back to our study, let I = J/(f), for some graded ideal J ⊂ S, and
such that

dim
R

I
= 2, depth

R

I
= 1, µ(I) = s and rankΩ2

R(I) = 2.

By the above proposition, if f ∈ mJ, that is f is not a minimal generator
of J, then M = Ω2

R(I) is a graded non-orientable MCM(R)–module, with
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µ(M) = s+1. In [EP3, Theorem 1.3], it is proved that the hypothesis f ∈ mJ
is fulfilled for s ≥ 4. By [EP3, Theorem 1.3] and [BEPP], one gets the complete
description of the indecomposable, graded, non–orientable MCM modules of
rank 2, 4– and 5–generated. There is a finite number of such modules, which
corresponds somehow to the rank 1 modules described in [EP2]. These results
remind us of the theory of Atiyah and give a small hope that the non-orientable
case behaves in the same way for higher ranks.

For the 6–generated case, we have Lemma 18 [BEPP]. We shall give here a
different proof.

Lemma 3.5 ([BEPP]). There exist no graded, indecomposable, non–orientable,
rank 2, 6–generated MCM modules.

Proof. Suppose there exist such an MCM module M . Then M ∼= Ω2
R

(
J/(f)

)
for a certain 5–generated ideal J = (α1, α2, α3, α4, α5) of S (see [BEPP,
Lemma 11]). As in the proof of [BEPP, Lemma 18], one may suppose that J
is generated in degree 2. Let

0 → S(−5) → S5(−3) → S5(−2) → S → S

J
→ 0

be the minimal free S–resolution of S
J . This implies that the Hilbert series of

S/J is given by

HS/J(z) =
1 − 5z2 + 5z3 − z5

(1 − z)4
=

1 + 3z + z2

1 − z
.

This shows that dim R
J = 1, which is impossible.

4 Maximal Cohen–Macaulay modules over K[[x, y]]/(xn)

In this section we are concerned with the structure of the MCM modules over
the ring Rn := K[[x, y]]/(xn), n ≥ 2. Let A := K[[y]], S := K[[x, y]], and
Rn := A[[x]]/(xn), n ≥ 2. In order to know the structure of the MCM modules
over the ring Rn one should apply a completely different method as we have
seen in the previous sections. We shall make a quick summary of the results
of [EP4].
Any MCM Rn–module M is free over A of finite rank. Giving a MCM Rn–
module M is equivalent with giving the action of x on the free A–module M,
that is with giving an endomorphism u ∈ EndA(M) such that un = 0, which
can be represented by its matrix T in some basis of M over A. Obviously,
T n = 0.



Maximal Cohen-Macaulay modules over hypersurface rings 85

Proposition 4.1 ([En]). Let

T = {T | T is an m×m− matrix over A, T n = 0, m ≥ 1}
and

M = {M |M is an MCM Rn − module}.
Then the map φ : T → M defined by φ(T ) to be the MCM Rn–module asso-
ciated to the matrix factorization

(x Idm−T, xn−1 Idm +xn−2T + . . .+ T n−1)

is surjective.

We briefly recall the proof:

Proof. Let us consider an MCM Rn–module M whose minimal free Rn–
resolution is

. . . �ψ̄ Rqn �ϕ̄ Rqn �ψ̄ Rqn �ϕ̄ Rqn � M � 0,

where (ϕ, ψ) is a matrix factorization of xn over K[[x, y]] which defines M.
Let m := rankAM and let T be the nilpotent m ×m–matrix with entries in
A which gives the action of x on the finite free A–module M , and let N be
the MCM Rn–module given by the periodic resolution

. . . �µ̄ Rmn �̄ν Rmn �µ̄ Rmn �̄ν Rmn � N � 0,

where
ν = x Idm−T, µ = xn−1 Idm +xn−2T + . . .+ T n−1.

Then N is an A–free module of rank m and the action of x on N is given
by T. This means that the Rn–modules M and N are isomorphic, hence the
module M has the matrix factorization (ν, µ).

Remark 4.2. The matrix factorization (ν, µ) from above can be not reduced,
as we can see in the following example and, by consequence, the Rn–free res-
olution provided by this factorization could be not minimal.

Example 4.3. Let us consider the MCM R3–module given by the matrix fac-

torization (ϕ :=
(
x −y
0 x2

)
, ψ :=

(
x2 y
0 x

)
). Then, as an A–module, M

has rank 3 and the action of x on M is given by the matrix T :=

⎛
⎝ 0 y 0

0 0 1
0 0 0

⎞
⎠ ,

that is the matrix factorization (ν, µ) is given by

ν =

⎛
⎝ x −y 0

0 x −1
0 0 x

⎞
⎠ , µ =

⎛
⎝ x2 xy y

0 x2 x
0 0 x2

⎞
⎠ .
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In order to find the matrix factorizations of the MCM Rn–modules, we need
to study the structure of the nilpotent matrices over A. The general structure
of these matrices, equivalently of nilpotent endomorphisms of finite free A–
modules, is given in a more general setting in [En].
In order to find the matrix factorizations of the MCM Rn–modules, we need
to study the structure of the nilpotent matrices over A. The general structure
of these matrices, equivalently of nilpotent endomorphisms of finite free A–
modules, is given in a more general setting in [En]. Namely, let E be a finite
free module of rank m over a principal ideal domain A. Let u ∈ EndA(E) such
that un = 0 and un−1 �= 0, n ≥ 2. For 0 ≤ k ≤ n, we denote Ek := ker(uk).
Then, for any 0 ≤ k ≤ n− 1, Ek+1/Ek is a non–zero free module over A, and
the morphism

ūk :
Ek+1

Ek
→ Ek

Ek−1
, ūk(x+ Ek) = u(x) + Ek−1, x ∈ Ek+1,

induced by u, is injective, ∀ 1 ≤ k ≤ n− 1. In the above notations we have:

Theorem 4.4 ([En]). There exists a basis B of E such that the matrix of u
in the basis B has the form:

MB(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Λ1 ∆11 ∆12 . . . ∆1,n−2

0 0 Γ1Λ2 ∆22 . . . ∆2,n−2

0 0 0 Γ2Λ3 . . . ∆3,n−2

...
...

...
...

...
...

0 0 0 0 . . . Γn−2Λn−1

0 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where Λ1 =
(

diag(a11, . . . , a1r2)
0

)
is of size r1 × r2 and has the last r1 − r2

rows 0, Λk = diag(ak1, . . . , akrk+1), k ≥ 2, Γk is left invertible and of size
rk+1 × rk+2, for any k, and ∆ij is of size ri × rj+2, for any i, j. Moreover,
for k ≥ 1, the elements ak1 | ak2 | . . . | akrk+1 are the invariants of the A–free
modules ūk(

Ek+1
Ek

) ⊂ Ek

Ek−1
.

As an immediate consequence we get the known form of the indecomposable
MCM modules over R2 = k[[x, y]]/(x2) (see [BGS, Proposition 4.1], [Y, Ex-
ample 6.5]).

Proposition 4.5. Let M be an indecomposable MCM–module over K[[x, y]]/(x2).
Then M has a matrix factorization of the following form:

((x), (x)), or
((

x yt

0 x

)
,

(
x −yt
0 x

))
,
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for some positive integer t.

From Theorem 4.4, one can see that the structure of the nilpotent endomor-
phisms which have the nilpotency index n ≥ 3 is more complicate. As a
consequence, the structure of the MCM modules over the ring Rn, n ≥ 3, is
more complicated.
LetM be an MCMRn–module, n ≥ 2. For 1 ≤ i ≤ n we denoteMi := 0 :M xi.
Then the action of x on M yields the filtration

(0) ⊂M1 ⊂M2 . . . ⊂Mn−1 ⊂Mn = M,

where all the factors Mi

Mi−1
, i ≥ 1, are free A–modules. The composition map

Mi+1
�x Mi

� Mi

Mi−1

induces an injective map

Mi+1

Mi
→ Mi

Mi−1
, m+Mi �→ xm+Mi−1.

We set M0 := 0 and ri := rankA( Mi

Mi−1
), 1 ≤ i ≤ n. Then

r1 ≥ r2 ≥ . . . ≥ rn and r1 + r2 + . . .+ rn = rankA(M).

The sequence (r1, r2, . . . , rn) is an invariant of the module M. We shall call
this sequence the canonical sequence associated to M . The main result in
[EP4] states that, for an arbitrary decreasing sequence of positive integers
(r1, r2, . . . , rn), n ≥ 3, there exist infinitely many non-isomorphic indecompos-
able MCM Rn–modules with the canonical associated sequence (r1, r2, . . . , rn).
The construction procedure is inductive. The most laborious step is to find
infinite families of indecomposable non-isomorphic MCM R3–modules for ar-
bitrary decreasing sequences. Moreover, in [EP4, Theorem 1.12] are explicitly
given infinite families of indecomposable MCM Rn–modules of arbitrary rank
r ≥ 1.

References

[At] M.F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., 7(3)
(1957), pp. 415–452.

[Bo1] N. Bourbaki, Algebre, Hermann, Paris, 1970-1980, Chapter IX.

[BGS] Buchweitz, R.-O., Greuel, G.-M., Schreyer, F.-O, Cohen-Macaulay modules on hy-
persurface singularities II, Invent. Math., 88 (1987), 165–182.



88 V. Ene

[B] W. Bruns, “Jede” endliche freie Auflösung ist freie Auflösung eines von drei Ele-
menten erzeugten Ideals, J. of Algebra 39(1976), 429–439.

[BEPP] C. Baciu, V. Ene, G. Pfister, D. Popescu, Rank two Cohen-Macaulay modules over
singularities of type x3

1 + x3
2 + x3

3 + x3
4, J. Algebra, 292(2), 2005, 447-491.

[BH] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press,
Cambridge, 1993.

[Ei] D. Eisenbud, Homological Algebra with an application to group representations, Trans.
Amer. Math. Soc., 260(1980), pp. 35–64.

[En] V. Ene, On the structure of nilpotent endomorphisms, An. St. Univ. Ovidius Con-
stanta, Ser, Mat., 14(1) (2006), 71–82.

[EP1] V. Ene, D. Popescu, Steps in the classification of the Cohen-Macaulay modules over
singularities of type xt + y3, Algebras and Representation Theory, 2(1999), 137-175

[EP2] V. Ene, D. Popescu, Rank one Maximal Cohen-Macaulay modules over singulari-
ties of type Y 3

1 + Y 3
2 + Y 3

3 + Y 3
4 , in: Commutative Algebra, Singularities and Com-

puter Algebra (J. Herzog and V. Vuletescu eds.), Kluwer Academic Publishers, (2003),
pp. 141–157.

[EP3] V. Ene, D. Popescu, Lifting an Ideal from a Tight Sequence and Maximal Cohen-
Macaulay Modules, Computational Commutative and Non-Commutative Algebraic
Geometry (Eds. S. Cojocaru, G. Pfister, V. Ufnarovski),Kluwer Academic Publishers,
NATO Science Series, vol. 196, 2005, 90-103.

[EP4] V. Ene, D. Popescu, On the structure of maximal Cohen–Macaulay modules over the
ring K[[x,y]]/(xn), to appear in Algebras and Representation Theory

[GPS] G.-M. Greuel, G. Pfister and H. Schönemann, Singular 2.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern, (2001), http://www.singular.uni-kl.de.

[HK] J. Herzog, M. Kuhl, Maximal Cohen-Macaulay modules over Gorenstein rings and
Bourbaki sequences, in: Commutative Algebra and Combinatorics, Adv. Stud. Pure
Math., Vol. 11, 1987, pp. 65–92.

[HP] J. Herzog, D. Popescu, Thom-Sebastiani problems for maximal Cohen-Macaulay mod-
ules, Math. Ann., 309 (1997), 153-164.

[IK] A. Iarrobino, V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci,
Lect. Notes in Math. 1721, Springer, Berlin, 1999.

[K] C. P. Kahn, Reflexive modules on minimally elliptic singularities, Math. Ann.,
285(1989), 141-160.

[Kn] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math.
88(1987), 153-164.

[LPP] R. Laza, G. Pfister, D. Popescu, Maximal Cohen-Macaulay modules over the cone
of an elliptic curve, J. of Algebra, 253(2002), pp. 209–236.



Maximal Cohen-Macaulay modules over hypersurface rings 89

[Mig] J. Migliore, Introduction to Liaison Theory and Deficiency Modules, Progress in
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