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COMPUTATIONS IN WEIGHTED

POLYNOMIAL RINGS

Giorgio Dalzotto and Enrico Sbarra

Abstract

In this note we survey some results which are useful to perform

algebraic computations in a weighted polynomial ring.

Introduction and notation

In this survey paper we consider non-standard graded polynomial rings and
take into examination some results concerning weighted Hilbert functions,
weighted lexicographic ideals and Castelnuovo-Mumford regularity, from a
computational point of view.
In Section 1 we recall some relevant facts about Hilbert functions of graded
modules over a weighted polynomial ring. In particular we illustrate a method
to compute the Hilbert function and the Hilbert polynomials given the associ-
ated Poincare series. In the second part we briefly discuss lexicographic ideals
in the non-standard setting. In Section 2 we verify the validity of the operation
of polarization in the non-standard case. In the final section we give a detailed
proof of a formula which relates Castelnuovo-Mumford regularity with graded
Betti numbers and establishes a natural counterpart to a very well-known and
useful fact valid in the standard-case.
We consider polynomial rings over an infinite field K of characteristic 0 where
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the degrees of the variables are assumed to be positive integers with no fur-
ther restriction. Variables are ordered by increasing degree (weight). We de-
note the polynomial ring by R = K[X1, . . . ,Xn], where Xi = (Xi1, . . . , Xili),
deg Xij = qi for j = 1, . . . , li, and q1 < q2 < . . . < qn. We let w be the weight
vector (deg X11, . . . , deg Xnln) so that (R, w) stands for a polynomial ring with
the graduation given by w. We consider term orderings > which are degree
compatible and assume Xij > Xik if j < k, i = 1, . . . , n. The total number of
variables

∑n
i=1 li will be denoted by l and the least common multiple of the

weights lcm(q1, . . . , qn) by q. In Section 3 it is not necessary to group together
variables of the same weight and therefore we re-label them X1, . . . , Xl.

1 Hilbert functions

As in the standard graded case, homogeneous ideals can be studied by means
of Hilbert functions. If M is a graded (R, w)-module, the assignment

HM (s)
.
= dimK Ms

defines the Hilbert function HM : Z → N of M , while the Poincare series of
M is defined by

P (M, t)
.
=
∑

i≥0

HM (i)ti ∈ Z[[t]].

It is well-known that the Poincare series of M can be expressed as a rational
function

h(t)/
n∏

i=1

(1− tqi)li ,

where h(t) ∈ Z[t]. Recall that a function G : Z → C is called quasi-polynomial
(of period g) if there exists a positive integer g and polynomials p0, . . . , pg−1

such that for all s ∈ Z one has G(s) = pj(s), where s = hg+j and 0 ≤ j ≤ g−1.
Thus, if I is a homogeneous ideal of (R, w), there exists a uniquely determined
quasi-polynomial function GR/I such that HR/I(s) = GR/I(s) for all s � 0.
To be more precise, if we let d to be the order of the pole of P (R/I, t) at t = 1,
then there exist q polynomials p0, . . . , pq−1 ∈ Q[t] of degree at most d− 1 and
with coefficients in [qd−1(d− 1)!]−1Z such that, for all s � 0,

HR/I (s) = pj(s) for s ≡ j mod q.

Following the approach of [B], we now explain how to read the Hilbert
polynomials from the Poincare series of R/I . If we let P (R/I, t) = f(t)/g(t),
with f(t), g(t) ∈ Q[t], from the division algorithm f(t) = r(t)g(t) + s(t) we
get a unique decomposition P (R/I, t) = Ppol + Prat, where Ppol ∈ Q[t] and
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Prat ∈ Q[[t]], such that either deg Prat < 0 or Prat = 0. Clearly, if Prat = 0
then all of the Hilbert polynomials are zero. Moreover, one can show (cf. [B],
Section 2) that there exist integers λij such that

Prat =
d∑

i=1

q−1∑

j=0

λij
tj

(1− tq)i
.

Thus, if we let ϕ0(t)
.
= 1 for all t, and ϕi(t)

.
= (i!)−1(t + 1) · · · (t + i), one can

express the Hilbert polynomials of R/I by means of the following formula

pj(s) =
d∑

i=1

λijϕi−1

(
s− j

q

)
for s ≡ j mod q.

The last few considerations allow us to compute the Hilbert function of R/I
given the Poincare series as an input. On the other hand, this method is not
optimal because it amounts to solve a linear system associated with a dq× dq
matrix with integer entries. In order to improve the above reasoning, one can
argue as follows. Let Prat = p(t)/q(t), where p(t) and q(t) are polynomials
in Z[t] with no common factor, i.e. with no common complex roots. Let
ω1, . . . , ωm be the distinct roots of q(t) with multiplicities, we say, d1, . . . , dm.
Since q(t) divides g(t), it is clear that, for all i, ωi is a root of the unity and
ωq

i = 1. By using partial fractions, we know there exist unique νik, with
i = 1, . . . , m and k = 1, . . . , di such that

Prat =

m∑

i=1

di∑

k=1

νik

(1− ωit)k
.

The coefficients νik can be computed solving an in general much smaller linear
system with coefficients in Q[ω1, . . . , ωm]. Since

1

(1− ωit)k
=
∑

s≥0

(
k + s− 1

k − 1

)
(ωit)

s,

and, therefore,

Prat =

m∑

i=1

di∑

k=1

νik

(1− ωit)k
=

m∑

i=1

di∑

k=1

∑

s≥0

νik

(
k + s− 1

k − 1

)
(ωit)

s

=
∑

s≥0

(
m∑

i=1

di∑

k=1

νik

(
k + s− 1

k − 1

)
ωi

s

)
ts
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we can use the fact that ωs
i = ωs mod q

i to compute the Hilbert polynomials as
follows

pj(s) =

m∑

i=1

di∑

k=1

νik

(
k + s− 1

k − 1

)
ωi

j

where j = 0, . . . , q − 1 and s ≡ j mod q.
We implemented these formulas as functions for the computer algebra sys-
tem [CoCoA] and the interested reader can download the code∗ at the URL

http://www.dm.unipi.it/ � dalzotto/HilbertNonStandard.coc,
which contains also some procedures for computing weighted generic initial
ideals and lexicographic ideals. We conclude this section by spending a few
words about a way of testing whether a homogeneous ideal I ⊂ (R, w) is lex-
ifiable, i.e. admits an associated lexicographic ideal I lex ⊂ (R, w). It is easy
to see that this is not always the case. What is needed is a method to check
whether a monomial ideal is lexicographic, since in the non-standard case the
ideal generated by a lexsegment needs not to be a lexicographic ideal.

In the following definition we denote
∑l

i=1 wi by |w|. For any non empty
subset J of {1, . . . , l}, we let |J | denote the cardinality of J and qJ

.
= lcm{wi}i∈J .

Definition 1.1. Let w ∈ Nl
>0. Then

G(w)
.
=

{
−w1 if l = 1

−|w|+ 1
l−1

∑
2≤ν≤l

[(
l−2
ν−2

)−1∑
|J|=ν qJ

]
if l > 1.

It is not difficult to see that G(w) can be computed recursively as follows

l∑

i=1

G((w1, . . . , wi−1, ŵi, wi+1, . . . , wl)) = (l − 1)G(w) − q,

where q = lcm(w1, . . . , wl).
Knowing that, if (R, w) is a weighted polynomial ring and n > G(w), each
monomial of Rn+hq is divisible by a monomial in Rhq for any h ∈ N (cf. [BR]
Proposition 4B.5), one can show the following result:

Proposition 1.2 ([DS], Proposition 4.9). Let I ⊂ (R, w) be a homogeneous
ideal generated in degree ≤ d and let q

.
= lcm(q1, . . . , qn). If Ii is spanned

(as a K-vector space) by a lexsegment for all i ≤ d + q + G(w), then I is a
lexicographic ideal.

∗the looks of which might appear quite sophisticated. This is due to the fact that [CoCoA]
does not allow a straightforward use of algebraic extensions Q[α] of Q. A possible solution
is to take normal forms with respect to the ideal generated by the minimal polynomial of α

in Q[t].
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2 Polarization

Polarization is a well-known algebraic operation on a monomial ideal which
returns a squarefree monomial ideal in a larger polynomial ring. With some
abuse of notation, we refer to polarization also when we consider a procedure
which has been developed in [P] and consists of three fundamental operations
on a homogeneous ideal I , which are polarizing a monomial ideal, modding
out by a generic sequence of linear forms and taking initial ideals with respect
to the lexicographic order. In the standard case, polarization returns as an
output the associated lexicographic ideal of I . Here we show that one can
define polarization also for homogeneous ideals in weighted polynomial rings
and that the algorithm terminates when an ideal, which we denote by IP and
call the complete polarization of I , is computed. This needs not to be the
lexicographic ideal associated with I , for instance because the last one does
not necessarily exist.

Definition 2.1. Let I ⊆ (R, w) be a monomial ideal and let P be the poly-
nomial ring K[Zijh] graded by deg Zijh

.
= qi, where 1 ≤ i ≤ n, 1 ≤ j ≤ li,

1 ≤ h ≤ N , N � 0. Let π : P → R be the homogeneous map (of degree 0)
defined by π(Zijh)

.
= Xij . Then we call the monomial ideal of P generated by

{
zp(µ) =

n∏

i=1

li∏

j=1

µij∏

h=1

Zijh : xµ = Xµ11

11 · · ·X
µnln

nln
is a minimal generator of I

}

the polarization of I and denote it by I p.

Observe that I p is a squarefree ideal of P and that the graduation on P is
chosen in such a way that the degree of zp(µ) is the same as that of xµ. Thus,
I and I p have minimal generators in the same degrees. In order to prove
that all of the graded Betti numbers of I and I p are the same, we recall the
following result.

Lemma 2.2. Let M be a finitely generated graded (R, w)-module. Let f ∈ Rd

be an M -regular form and S
.
= R/(f). If F• is a minimal graded free resolution

of M , then F• ⊗R S is a minimal graded free resolution of M/fM as an S-
module. In particular, the graded Betti numbers of M and M/fM are the
same.

Proof. Tensoring F• → M → 0 with S we obtain the complex of free S-
modules F•⊗R S → M/fM → 0. We have to prove that all of the TorR

j (M, S)
vanish. We achieve this by tensoring the resolution 0 → R(−d) → R → S →
0 of S as an R-module with M , obtaining the complex M(−d) → M →
M/fM → 0. But this is exact, since f is M -regular and, consequently
TorR

j (M, S) = TorR
1 (M, S) = 0 for all j.
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Lemma 2.3. The graded Betti numbers of I and I p are the same.

Proof. Let us fix i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ li. Let S
.
= R[Z] with

deg Z
.
= qi and τ : S → R be the graded ring homomorphism defined by

Z 7→ Xij . Now consider the sets A
.
= {Xµ : Xµ ∈ G(I), Xij - Xµ} and

B
.
=
{

XνZ
Xij

: Xν ∈ G(I), Xij | Xν
}
, where G(I) denotes the minimal set of

generators of I . Finally, let I ′ be the ideal of S generated by A ∪ B.

It is easy to see that the polarization can be computed after a finite number
of such steps. Therefore, by virtue of the previous Lemma, we only need to
prove that Z −Xij is an S/I ′-regular element. Suppose now that Z −Xij is
not regular, i.e. Z −Xij belongs to an associated prime of I ′, we say I ′ : m,
where m 6∈ I ′. Since I ′ : m is a monomial ideal, both Z ∈ I ′ : m and
Xij ∈ I ′ : m. Therefore Zm ∈ I ′ and m 6∈ I ′. Thus, Zm is a multiple of some
generator of I ′ of the form Z

Xij
Xµ and Z - m. Since Xijm ∈ I ′ and Z - Xijm,

Xijm is divisible by some Xµ ∈ A. Finally, Xµ | m and m ∈ I ′, which is a
contradiction.

Let now W = {fijh} be a collection of homogeneous polynomials of (R, w)
with deg fijh = qi, 1 ≤ i ≤ n, 1 ≤ j ≤ li and 1 ≤ h ≤ N . Let σW : P → R
be the homogeneous map (of degree 0) given by σW (Zijh) = fijh and IW

.
=

σW (I p). If (R, w) is standard graded, then W is a collection of linear forms.
It is known from [P] that, for a generic collection L of linear forms, IL and I
have the same graded Betti numbers. This fact can be easily generalized to the
non-standard case, where instead of a generic collection of linear forms we use
a generic collection of homogeneous forms W inW = RNl1

q1
×RNl2

q2
×· · ·×RNln

qn
,

where generic means that W is a point of a Zariski open set of W .

Proposition 2.4. There exists a Zariski open set U ⊆ W such that, for any
W ∈ U , IW and I have the same graded Betti numbers.

Proof. By virtue of Lemma 2.3 it is enough to show that the graded Betti
numbers of IW are the same as those of I p. The kernel of σW is generated
by a P/I p-regular sequence if and only if TorP

m(P/ KerσW , P/I p) = 0 for all
m > 0. This is an open property on W . The Zariski open set U is not empty
since {Zijh − Zij1} is a P/I p-regular sequence (cf. the proof of the previous
Lemma). Thus, if W ∈ U , KerσW is generated by a P - and P/I p-regular
sequence. By Lemma 2.2, IW has the same graded Betti numbers as I p.

As an important consequence for our purposes, we thus obtain that, if W
is a generic collection of homogeneous forms, then I and IW have the same
Hilbert function. Macaulay’s Theorem now yields that I and in(IW ) have
the same Hilbert function. Moreover, since the Hilbert function of R/IW
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is minimal when KerσW is generated by a P/I p-regular sequence, HIW
is

maximal when W is generic.
The lexicographic order on the set of monomials subspaces of Rd is defined

as follows. If dim V > dim W then V >lex W . If V and W are spanned
by Xµ1 >lex . . . >lex Xµm and Xη1 >lex . . . >lex Xηm respectively, then
V >lex W if there exists s < m such that Xµs >lex Xηs and Xµi = Xηi for
every i < s. We can thus order the monomials of

∧m
Rd lexicographically.

Proposition 2.5. Let W be a generic collection of forms of W. Then, for
all d ≥ 0, in(IW )d is the greatest monomial subspace which can occur for any
W ∈ W.

Proof. First observe that, if I ⊆ (R, w) is a homogeneous ideal, in(Id) is
spanned by Xµ1 , . . . , Xµm and Id is spanned by g1, . . . , gm, then in(g1 ∧ · · · ∧
gm) = Xµ1 ∧ · · · ∧ Xµm . In fact, after a change of basis, one may assume
that in(gi) = Xµi . Moreover, if I is a monomial ideal with dim Id = m,
HIW

(d) ≥ m for any W ∈ W . Let Xµ1 ∧ · · · ∧Xµm be the greatest monomial
that ever occurs as in (

∧m(IW )d) for any W , then for a generic W

in

(
m∧

(IW )d

)
= Xµ1 ∧ · · · ∧Xµm .

This is easily seen: the coefficient of Xµ1 ∧ · · · ∧ Xµm in
∧m

σW (I p)d is a
polynomial in the coefficients of {fijh}; since Xµ1 ∧ · · · ∧ Xµm occurs as a
monomial of

∧m σW (I p)d for some W , it must occur for an open set U in W .
For each W ∈ U , Xµ1 ∧ · · · ∧Xµm is the initial term of

∧m
σW (I p)d. Thus,

in(IW )d = (Xµ1 , . . . , Xµm), as desired.

After taking the initial ideal with respect to the lexicographic order we
may assume that I is a monomial ideal. We let Φ(I)

.
= in(IW ), where W is

a generic collection of forms as above, and we denote the s-fold application of
Φ by Φs(I). What we have shown above proves that Φ(I) is well-defined and
has the same Hilbert function as I . Moreover, Φ(I)d ≥lex Id for every d. As a
consequence Φ(I) = I if I is a lexicographic ideal and there exists a minimum
index s such that Φt(I) = Φs(I) for any t > s. We say that the ideal Φs(I) is
a complete polarization of the ideal I and we denote it by IP.

Examples 2.6. a) Let (R, w) = (K[X, Y, Z, T, U ], (1, 2, 2, 3, 3)) and consider
the ideal I = (X4, Y T, X2T, Y Z2). We can easily check that I is not lexifiable.
The complete polarization of I is reached after three steps,

Φ(I) = (X4, X3Y, X3Z, X3T, X2Y 2, X2Y Z, X2Y T, X2ZT, X2T 2, X2Z3,

XY 2T, XY ZT, XY 3Z, XY 4, XY 2Z2, Y 4Z, Y 5, XY Z4, XY T 3,

Y 3T 2, Y T 4);
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Φ2(I) = (X4, X3Y, X3Z, X2Y 2, X2Y Z, X3T, X2Y T, X2ZT, XY 2T, XY ZT,

X2Z3, X2T 2, XY 4, XY 3Z, XY 2Z2, Y 5, Y 4Z, XY Z4, Y 3T 2, XY T 3,

XY 2U3, Y T 5, XY Z3U3, Y 2ZT 4, Y Z3T 4);

IP = Φ3(I) = (X4, X3Y, X3Z, X3T, X2Y 2, X2Y Z, X2Y T, X2Z3, X2ZT,

X2T 2, XY 4, XY 3Z, XY 2Z2, XY 2T, XY 2U3, XY Z4, XY Z3U3,

XY ZT, XY ZU4, XY T 3, Y 5, Y 4Z, Y 3T 2, Y 2ZT 4, Y 2T 5,

Y Z3T 4, Y Z2T 5, Y T 6).

b) Let (R, w) = (K[X, Y, Z], (1, 2, 4)), I1 = (Y 2, X2Y, XY Z) and I2 = (X3, Y 2).
One verifies that I1 and I2 are lexifiable and I1

lex = IP
1 = (X4, X3Z, X2Y ),

whereas IP
2 = (X3, X2Y, XY 2, Y 3) and I2

lex = (X3, X2Y, X2Z, XY 2, Y 4).

3 Regularity

Let M be a finitely generated graded module with proj dim M = r and let
bi(M)

.
= maxj∈Z{βij(M) 6= 0}, for i = 0, . . . , r. In this section we provide a

detailed proof of the following theorem.

Theorem 3.1 ([DS] Theorem 3.5). Let R = K[X1, . . . , Xl] with deg Xi = qi.
Let M be a finitely generated R-module. Then

reg M = max
i≥0

{bi(M)− i} −

l∑

j=1

(qj − 1).

Observe that local cohomology modules of a graded module over a weighted
polynomial ring have a natural graded structure so that Castelnuovo-Mumford
regularity can be still defined by means of local cohomology. In fact, if H i

m
(M)

denotes the ith graded local cohomology module of the graded R-module M
with support on the graded maximal ideal m and we let ai(M) be max{j ∈
Z : H i

m
(M)j 6= 0} if H i

m
(M) 6= 0 and −∞ otherwise, the Castelnuovo-Mumford

regularity of M is defined, as usual, by reg M = max0≤i≤dimM{a
i(M) + i}.

Notice also that, in case of a standard graduation, the second term on the right-
hand side of the formula vanishes giving back the well-known characterization
of regularity by means of graded Betti numbers.

Theorem 3.1 provides a method to compute the regularity of an (R, w)-
module M without using Noether Normalization but directly from its minimal
resolution as an (R, w)-module, as shown in the following easy example.

Example 3.2. Let (R, w) = (K[X, Y, Z], (1, 2, 3)) and I = (Z2−X6, Y 2−X4).
Then R/I is 1-dimensional and K[X ] is a Noether Normalization, since both
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Y and Z are integral over K[X ]. Clearly, {1, Y , Z, Y Z} is a minimal system
of generators of R/I as a K[X ]-module and the first syzygy module is 0.
Therefore a minimal graded resolution of R/I as a K[X ]-module is

0 → K[X ]⊕K[X ](−2)⊕K[X ](−3)⊕K[X ](−5) → R/I → 0.

By Theorem 5.5 in [Be] we have that regR/I = 5, since deg X = 1. On
the other hand, a minimal graded resolution of R/I as an R-module is 0 →
R(−10) → R(−4) ⊕ R(−6) → R/I → 0 and Theorem 3.1 yields reg R/I =
10− 2− (0 + 1 + 2) = 5.

We thus have a tool for the calculation of regularity which is only based
on Gröbner bases computations. This can be of some advantage, since to find
a Noether Normalization may be quite unpleasant. In the standard case, a
Noether Normalization can be obtained by choosing a collection of generic lin-
ear forms of length dim M (see for instance [V]). In a non-standard situation,
the weighted counterpart of Prime Avoidance only grants that such generic
forms can be chosen of degree q.

The following results descend easily from the basic properties of local co-
homology.

Lemma 3.3. Let 0 → N → M → Q → 0 be a short exact sequence of finitely
generated graded R-modules. Then we have:

(i) reg N ≤ max{regM, reg Q + 1}.

(ii) reg M ≤ max{regN, reg Q}.

(iii) reg Q ≤ max{regN − 1, regM}.

(iv) If N has finite length, then reg M = max{reg N, reg Q}.

Proof. We start by proving (i). Consider the long exact sequence in cohomol-
ogy . . . → H i−1

m
(Q) → H i

m
(N) → H i

m
(M) → . . .. Let α

.
= max{regM, reg Q+

1} and observe that a0(N) ≤ a0(M) ≤ reg M ≤ α, while H i−1
m

(Q)α−i+1 = 0
for all i ≥ 1, since α > reg Q. Thus, it is sufficient to verify that ai(N) ≤ α− i
for all i ≥ 1, and this follows immediately from the fact that H i

m
(N)α−i+1 '

H i
m
(M)α−i+1 = 0, for all i ≥ 1. The proofs of (ii) and (iii) are similar.

As for the proof of (iv), it is clear that reg N = a0(N) and a0(M) equals
max{a0(N), a0(Q)}. Thus, reg M

.
= max

{
a0(M), maxi>0{a

i(M) + i}
}
, which

is max
{
a0(N), a0(Q), maxi>0{a

i(Q) + i}
}

and we are done.
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As an application one gets that, if M is a finitely generated graded R-
module and x ∈ Rd is non-zerodivisor on M , then reg M/xM = reg M+(d−1).
More generally, if x is such that (0 :M x) has finite length, then

reg M = max{reg 0 :M x, reg M/xM − (d− 1)}.

This is easily seen considering the exact sequence

0 → (0 :M x)(−d) → M(−d) → M → M/xM → 0

and splitting it into the two short exact sequences

0 →(0 :M x)(−d) → M(−d) → xM → 0

0 → xM → M → M/xM → 0.
(3.1)

We need now two more preparatory results.

Lemma 3.4. Let x ∈ Rd, d > 0, such that 0 :M x is of finite length. Then,
for all i ≥ 0,

ai+1(M) + d ≤ ai(M/xM) ≤ max{ai(M), ai+1(M) + d}.

Proof. From (3.1) we deduce that H i
m

(M(−d)) ' H i
m

(xM) for all i > 0, and,
therefore, ai(xM) = ai(M) + d for all i > 0. If ai(M/xM) were smaller than
ai+1(M) + d, from the the long exact sequence in cohomology

. . . → H i
m

(M) → H i
m
(M/xM) → H i+1

m
(xM) → H i+1

m
(M) → . . .

in degree α
.
= ai+1(M)+d, one would have 0 = H i

m
(M/xM)α → H i+1

m
(xM)α →

H i+1(M)α = 0, which is a contradiction since the middle term is not equal to
0. This completes the proof of the first inequality. The second inequality can
be proven in a similar way.

Lemma 3.5. With the above notation, b0(M) ≤ regM +
∑l

j=1(qj − 1).

Proof. Using downward induction on s, we prove that

b0(M/(X1, . . . , Xs)M) ≤ max
i≥0

{ai(M/(X1, . . . , Xs)M) + i}+
r∑

j=s+1

(qj − 1).

If s = l then M/(X1, . . . , Xl)M is Artinian and it coincides with its 0th lo-
cal cohomology, whereas its higher local cohomology modules vanish. Thus
a0(M/(X1, . . . , Xl)M) is the highest degree of an element in the module itself
and it is obviously bigger than b0(M/(X1, . . . , Xl)M).
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For the sake of notational simplicity, let N
.
= M/(X1, . . . , Xs). Suppose that

the above displayed equation holds true for N/Xs+1N . An application of
Nakayama’s Lemma provides b0(N) = b0(N/Xs+1N); hence, the inductive
hypothesis yields

b0(N) ≤ max{a0(N), b0(N/Xs+1N)}

≤ max
{
a0(N) +

l∑

j=s+1

(qj − 1), b0(N/Xs+1N)
}

≤ max
{
a0(N) +

l∑

j=s+1

(qj − 1), max
i≥0

{ai(N/Xs+1N) + i}+

r∑

j=s+2

(qj − 1)
}

= max
{
a0(N), max

i≥0
{ai(N/Xs+1N) + i + 1− qs+1}

}
+

r∑

j=s+1

(qj − 1).

By virtue of the previous Lemma,

max
{

a0(N), max
i≥0

{ai(N/Xs+1N) + i + 1− qs+1}
}

≤ max
{

a0(N), max
i≥0

{ai(N) + i + 1− qs+1, a
i+1(N) + qs+1 + i + 1− qs+1}

}

= max
i≥0

{ai(N) + i} = reg N,

since 1− qs+1 ≤ 0, and this completes the proof.

Proof of Theorem 3.1. We prove the assertion by induction on the projective
dimension of M . If proj dimM = 0, then M is a free module and its regularity
equals maxi≥0{a

i(M) + i} = al(M) + l. If M = R then, by Local Duality,

al(R) = max
{
j ∈ Z : H l

m
(R)j 6= 0

}
= −min

{
j ∈ Z : HomR(R, ωR)j 6= 0

}

= −min
{

j ∈ Z : HomR

(
R, R

(
−

l∑

h=1

qh

))
j
6= 0
}

= −min
{

j ∈ Z : R
(
−

l∑

h=1

qh

)
j
6= 0
}

= −

l∑

h=1

qh.

For an arbitrary finitely generated free graded R-module M = ⊕R(−c), since
local cohomology is additive, al(M) equals the largest al(R(−c)), which is
clearly al(R(−b0(M))). Thus,

reg M = al(M) + l = b0(M)−

l∑

j=1

(qj − 1).
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We may now assume that proj dimM ≥ 1. If we let 0 → N → F → M → 0
be the first step of a minimal graded free resolution of M , we immediately
see that b0(F ) = b0(M) and bi(N) = bi+1(M). Since H i

m
(F ) = 0 for i 6= l

and al(F ) = b0(M) −
∑l

j=1 qj , the long exact sequence in cohomology . . . →

H i−1
m

(N) → H i−1
m

(F ) → H i−1
m

(M) → H i
m

(N) → . . . shows that

a0(N) = −∞ and ai(N) = ai−1(M) for all 0 < i < l.

Moreover, from the exact sequence 0 → H l−1
m

(M) → H l
m

(N) → H l
m

(F ) →
H l

m
(M) → 0, it is easy to see that

al(M) ≤ al(F ) and al−1(M) ≤ al(N) ≤ max{al−1(M), al(F )}.

Therefore

reg M = max
i≥0

{ai(M) + i} ≤ max
{
max
i≥0

{ai(N) + i− 1}, al(M) + l
}

≤ max
{
max
i≥0

{ai(N) + i− 1}, b0(M)−

l∑

j=1

qj + l
}
.

(3.2)

By Lemma 3.5, reg M ≥ b0(M)−
∑l

j=1 qj + l, which implies that the inequal-
ities in (3.2) are equalities. Now we can make use of the inductive assumption
on N and obtain

reg M = max
{
reg N − 1, b0(M)−

l∑

j=1

qj + l
}

= max
{
max
i≥0

{bi(N)− i− 1} −
l∑

j=1

(qj − 1), b0(M)−
l∑

j=1

(qj − 1)
}

= max
{
max
i>0

{bi+1(M)− i− 1}, b0(M)
}
−

l∑

j=1

(qj − 1)

= max
i≥0

{bi(M)− i} −

l∑

j=1

(qj − 1),

as desired.
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