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GROBNER BASIS AND DEPTH OF REES
ALGEBRAS

Dorin Popescu

Introduction

Let B = K[X4,...,X,] be a polynomial ring over a field K and A = B/J
a quotient ring of B by a homogeneous ideal J. Let m denote the maximal
graded ideal of A. Then the Rees algebra R = A[mt] may be considered
a standard graded K-algebra and has a presentation B[Yy,...,Y,]/I;. For
instance, if J = 0 then R & K[Xy,...,X,,Y1,...,Y,]/(H), where H :=

The generators of I; can be easily described as follows. For any homoge-
neous form f = Zlgz‘lg“.gidgn Giy..igXiy - - - X4, € B of degree d we set

f(k) = Z1gi1g..,gidgn Wiy orig Xy o Xy Yig pyr -+ Yig
for k =0,...,d. For any subset L C B of homogeneous polynomials in B we
set
L' :={f®|feLk=0,...,deg f}. If L is a minimal system of generators
of J, then L' U H is a minimal system of generators of I; (see Proposition 1.1)
and if L is a Grobner basis of J for the reverse lexicographic order induced
by Xy >...> X, >Y, > ... >Y, then L' U H is a Grobner basis of I;
(see Theorem 1.3). This procedure is described in [HPT1]. However it is not
included in the new version [HPT2] even it has its own value (it is used in
[HOP]). Our Section 1 is an attempt to give a printed presentation.

The purpose of [HPT?2] is to compare the homological properties of A and
R. In particular the Castelnuovo-Mumford regularity of R, reg R, is < reg
A+1 (see also [E]). Unfortunately, depth R could be > depth A+ 1 as shows
an example of Goto [G], but if A is a polynomial algebra in one variable over a
standard graded K-algebra then it holds depth R < depth A+1 (see [HPT?2]).
The proof from [HPT2| uses a description of the local cohomology of R in
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terms of the local cohomology of A. Our Section 2 contains a direct proof of
the above inequality which does not use the local cohomology. This is part
of the joint work with J.Herzog and N.V.Trung which was not inclosed in
[HPT1], [HPT2].

1. Grobner basis of Rees algebras

Let A be a standard graded K-algebra with maximal graded ideal m =
(x1,...,2pn), A= B/J where B = K[X,...,X,] is a polynomial ring over a
field K and J is a homogeneous ideal of B. Then the Rees algebra R = A[mit]
may be considered as a bigraded module over the bigraded polynomial ring
S =K[Xq,...,X,,Y1,...,Y,] (where deg X; = (1,0), deg ¥; = (1,1)) and
has a presentation S/I; via the bigraded canonical surjection ¢ : S — R given
by ¢(X;) = z; and ¢(Y;) = z;t .

Let f = Z1§z‘1§...§id§n iy . iy Xiy - - Xi, € B be a homogeneous form of
degree d. For k =0,...,d we set

f(k) = Zlgilg..igidgn ail--~idXi1 s Xid—kYid—kJrl T Yid'

Notice that f*) is bihomogeneous of degree (d, k). For any subset L C B
of homogeneous polynomials in B we set
L :={f®|fecLk=0,...,deg f}.

Proposition 1.1 Let L be a (minimal) system of generators of J, then
{L" U H} is a (minimal) system of generators of 1;, where H = {X,Y; —
X;Yi|l <i<j<n}.

Proof. Let P = B[Xit,...,Xpt] C Bt], ¢1 : S — P, ¢2: P — R be
the maps given by (X,Y) — (X, Xt), respectively (X, Xt) — (z,xt). We
have ¢ = ¢a¢p1. Since ¢ is bigraded I; is bigraded too. Clearly we have
L' UH C I;. Conversely, let f € I;, we may choose f bigraded with deg
f=(a,b). Then ¢1(f) = f(X7Xt) = f(X7X>tb’ and so 0 = ¢(f) = f(x,a:)tb,
that is f(z,x) = 0. Therefore, there exist homogeneous elements g; € B and
fi € L such that f(X,X) = >.\_, g;fi. We may suppose L = {f1,..., fr}.
Let b; =min {deg f;,b}. Then

o1(f) = F(X, XNt = ST (gat? 0 (fit%) = () 0" 1),
and so f € L' U H, since Ker ¢; is generated by H.

Now let L be a minimal system of generators of J. We first show that
¢1(L') is a minimal system of generators of the ideal J; := ¢1(Iy) in P.
Indeed, ¢1(L') = {fit’|1 < i < r,0 < b <deg f;}. Suppose this is not a
minimal system of generators of J;. Then there exists an equation

fit® =52, 0 (fit0* ) (gjwt ),
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where bj, <deg f;, bjr + cjr = b and fjtbfk £ f;t* for all 7, k, and where all
summands are bihomogeneous of degree (d,b) with d =deg f;. Notice that
the right hand sum contains no summand of the form (f;t%*)(g;t%*). In
fact, otherwise we would have deg g;t°* = (0,b — b;x), and so by = b which
is impossible. It follows that f; = Zj#(zk gik)fj, a contradiction to the
minimality of L.

Now suppose that L’UH is not a minimal system of generators of I ;. If one
of the fi(k) is a linear combination of the other elements of L' U H, then ¢(L')
is not a minimal system of generators of J;, a contradiction. Next suppose
one of the elements of H, say, h = X1Y5 — X5Y7, is a linear combination of the
other elements of L' U H. Only the elements of bidegree (2,1) can be involved
in such a linear combination. In other words,

h=3 A fO + h with Ay € K.

Here the sum is taken over all f € L of degree 2, and h is a K-linear combi-
nation of the polynomials X;Y; — X;Y; different from h. Since the monomial
XY does not appear in any polynomial on the right hand side of the equation,
we get a contradiction.

Now we present an elementary Lemma useful in the next theorem.

Lemma 1.2 The Hilbert function HR,—) : N — N of R is given by
H(R,i) = (i+1)H(A,i), i € N, H(A,—) being the Hilbert function of A. In
particular, e(R) = dim A e(A).

Proof. We have R; = @|u|+‘v|:iKXu(Xt)v = @|u‘+|v‘:iKX“+Ut‘”| =
Dl o(Bw= KX™)t*. Thus H(R, i) = (i+1)H(A, 7). Let P4 (2) = e(A)z471/(d—
!+ ..., d =dim A be the Hilbert polynomial of A (see [BH,4.1]). It follows
that Pr(2) = (z+1)Pa(2) = e(A)(z+1)2971/(d—1)!+... = de(A)z?/d! +. . ..
Since dim R =dim A + 1, we are done.

We will now compute a Grébner basis of 1.

Theorem 1.3 Let < be the reverse lexicographic order induced by X, >
o> Xy >Y > ... >Y,. If L is a Grobner basis of J with respect to the
term order <, then L' U H is a Grobner basis of 15 with respect to <.

Proof. Let L be a Grobner basis of J with respect to the reverse lexico-
graphic order induced by < on B. Then L' U H is a Grobner basis of 17 with
respect to < if the obvious inclusion < in(L' U H) >C in(I;) is an equality.
For this aim it is enough to see that H(S/in(I),7) =H(S/ < in(L' U H) >,1i)
for all ¢ € N. But H(S/in(I;),:) =H(S/I;,i) = H(R,i) = (i + 1)H(A, ) by
Macaulay Theorem [BH,4.2.4] and Lemma 1.2. Choose a monomial basis T of
A. We need the following elementary lemma:
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Lemmal.4 T is a monomial basis of S/ < in(L'UH) > over K.

Back to our proof note that H(S/ < in(L' U H) >,i) = |T}|, where T
denotes the monomials of 7" of degree i. If u € T; then it gives exactly (i +1)-
monomials {u®|0 < k < i} in T/. Thus |T}| = (i + 1)|T;| = (i + 1)H(A, i),
which is enough.

We need the following lemma in the proof of Lemma 1.4.

Lemma 1.5 Let M be the set of monomials of B. Then

i) M is a K-basis in S/ < in(H) >.

it) If the linear K-space generated by T C M is an ideal in B then the
linear K -space generated by T' in S/ < in(H) > is an ideal too.

i) Let T C N C M. If N is contained in the ideal generated by T in B
then N’ is contained in the ideal generated by T’ in S.

i) Let TN C M. If TOAN =0 then T'NN' = (.

Proof. i) Note that in(H) = {X;Yj]i > j}. By construction in M appear
all monomials of type X¥* ... Xkey e ... Y5 these are exactly the monomials
which are not divided by a monomial of type X;Y; with i > j. But these are
the monomials which are not in < in(H) >.

ii) An element of 7" has the form u® for an u € T, 0 < k < deg u and
it is enough to show that X;u(®), Yju(’“) belong to 7'+ < in(H) >. But if
X;u®) ¢< in(H) > then as in i) it is contained in M’ and moreover X;u*) =
(X;u)®) € T" since X;u € T by hypothesis. Similarly, if Y;u®) ¢< in(H) >
then Y;u® = (X;u)++D ¢ 7"

iii) Let u®*) € N’ for some u € N, 0 < k <deg u. By hypothesis u = vw
forav e T and a w € M. Then ) = v w*E=9) for some 0 < s < k and so
u®) belongs to the ideal generated by T” in S.

iv) Let ¢ : S — B be the retraction of B C S given by Y — X. Then
(T =Tfor T C M. fT'NN’ # ) then »(T'NN') C (T")NYP(N') = TNN
and so TN N # 0.

Proof of Lemma 1.4 Let D C M be the set of monomials from in(J)
and C' = in(L). By hypothesis we have TUD = M and TN D = ) and using
Lemma 1.5 i),iv) we get 77U D’ = M is a K-basis in S/ < in(H) > and
T'ND' =( . Thus T" is a K-basis in S/ < D’,in(H) > because the linear
K-space generated by D’ in S/ < in(H) > is an ideal by Lemma 1.5 ii). But
in(L'UH) >=< D' in(H) > by Lemma 1.5 iii), which is enough.

Corollary 1.6 If J has a quadratic Grébner basis, then so does 1.
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We would like to remark that if L is a reduced Grobner basis, then L' U H
need not be reduced as shows the following:

Example 1.7 Let A = K[X17X2,X3]/(X1X2 - X32) Then L = {XlXQ —
X2} is a reduced Grobner basis of J, but L’ U H is not reduced, since XY =
n(X1Ye — X3Y3) appears in X;Ys — XoY7.

2. Depth of Rees algebras

As above, let B= K[X|,A=B/J=K[z],z = (z1,...,%,), S = K[X,Y],
R=15/1; = K[z,y] C Alt], where y = xt.

Lemma 2.1 (after [GS, 2.7]) Suppose x1,...,2,, r > 1 is a regular se-
quence on A and let f; := x; —yi—1, 1 < i <r, yo = 0. Then the sequences
{fi, - fobs {f1y- oy fro1, yr } are reqular on R. In particular depth R > depth
A.

Proof. Apply induction on r. Clearly 21 = f is regular on R C A[t] and
by symmetry y; is too. Suppose r > 1. Let

0— (z.) = R/(y:) — R/(%r,yr) = 0
be the canonical exact sequence. We have z,.R/(y,) = (X, Y, 1;)/(Y:, 1) =
(Xo)/(Xe) N (Ve Iy) = S/((Yr, 1) © Xgr)(—1). Note that ((Yr,1;) : X;) D
(Y1,...,Y,) because X,Y; — X;Y, € I,;. Thus (Y, 1) : X,) = (Y1,... Yy, (J :
X,)) = (Y,J), x, being regular on B. Hence z,R/(y.) = S/(Y,J)(—1) =
A(—1) which yields the following exact sequence:

(*) 0 — A(—=1) = R/(yy) — R/(zr,5r) — 0.

By induction hypothesis, we have {f1,..., fr—1} regular on R/(z,,y,). Since
{f1,--+, fr—1} acts on A as {x1,...,2,_1} it is also regular on A and so on
R/(yr) by (*). Since z, is regular on A it is also regular on R as well as y,
(see case r = 1). Thus {f1,..., fr—1,yr} is regular on R.

Suppose that {fi,..., fr} is not regular on R. Then there exists a prime
ideal P C R associated to (f1,. .., fr—1) and containing f,.. Since {f1,..., fr—1,
yr} is regular it follows y,. € P. We claim that P D (z1,...,z,). Otherwise,
let z; € P for a1 <j <n. By induction on 1 < i < r we see that j > ¢ and
(x1,...24,91,...,9;) C PRp. Indeed, if i = 1 then x; = f; € P and so j > 1
and z;y1 = 21y; € PRp. Thus y; € PRp. Suppose 1 < ¢ < r. By induction
hypothesis on i we have j > ¢ — 1 and (z1,...,2—1,¥1,--.,¥i—1) C PRp.
Since f. € P, 1 < e < r it follows z; € PRp. Thus j > i and y; € PRp
because z;y; = x;y; € PRp. This completes our induction on 4. It follows
Yy € PRp which is a contradiction.

N
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Then P D (z1,...,Zn,Y1,.-.,Yr—1) since f; € P. By induction hypothesis
on 7 we have {fa, ..., f.} regular on R/(x1,y1). It follows depth (R/(z1,y1))p
r—1 because P D (fa,..., fryz1,y1). But (R/(y1))p = (R/(z1,41))p because
yrz1 = x.y1 € (y1) and y. € P. Thus depth (R/(y1))p > r — 1 and so
depth (Rp) > r since y; is regular on R. This contradicts the choice of P as
associated to (f1,..., fr—1). Hence {f1,..., f-} is regular on R.

v

Remark 2.2 Note that y,.(z)" = (y)z,. ()" = (y)yr_1(2x)" "t = ... =
(y)"z1 = 0 modulo (f1,..., fr). Thus if {f1,..., fr,yr} would be regular on
R then ()" C (f1,...,fr) and so (z1,...,x,) would be a m-primary ideal
in A. Thus dim A =depth A = r. This is exactly the Cohen-Macaulay case
investigated in [GS]. Here we are interested especially in the case when A is
not Cohen-Macaulay.

Lemma 2.3 Suppose depth A = r and x1, ... x4 is reqular foras, 1 < s <r
in A and depth R/(x1,...,%s,Y1,...,Ys) #7 — S. Then depth R =r + 1.

Proof. Apply induction on s. If s = 1 then we consider the exact sequence
(*) from the proof of 2.1

0— A(=1) = R/(y1) — R/(x1,51) — 0.

By Lemma 2.1 and our hypothesis we have depth R/(x1,y1) > r. As depth
A = r we obtain

depth R/(y1) > min {depth A, depth R/(x1,y1)} > r.
On the other hand r = depth A > min {depth R/(y1), 1+ depth R/(z1,y1)}
implies necessarily depth R/(y1) = r and so depth R = r+ 1, y; being regular
on R.

Suppose now s > 1. By induction hypothesis we get then depth R/(zs,ys) =
r > r — 1. Applying again the case s = 1 it follows depth R = r + 1.

From Lemma 2.3 it follows

Proposition 2.4 Suppose that depth A #depth R. Then the Rees algebra
R of A[X'], X' = (X{,...,X.) has depth R' = depth A+ s+ 1.

Lemma 2.5 Let R’ be the Rees algebra of A’ = A[X']-the polynomial A-
algebra in one variable X', v =depth A, x1,...,x, a reqular sequence on A
and f1,..., fr defined as in 2.1. Suppose that depth R = r <dim A. If depth
R #depth A’ then depth R’ =depth A’ + 1.

Proof. Note that R'/(Y’) =2 R[X']/(X'y). By Lemma 2.1 {f1,..., f-,Y'}
forms a regular sequence in R’ and so depth R'/(Y') > r. By hypothesis
r =depth R and so depth R = 0, where R := R/(f1,...,f;). Asdim A > r
we see that depth (R/H?z’y)(]j?)) > 0, where
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0
Hgy)

Choose a homogeneous element u € R which is regular on R/H, &,,y)(R). We
may change A by A ® x K(Z) in order to suppose K infinite. By [BH,1.5.12]
we may take u of degree 1.

We claim that X’ — u is regular on R[X']/(X'y). Indeed, if ¢ € R satisfies
(X" —u)g € (X'y) in R[X'] then X'q, uq are zero in R[X']/(X'y). Then q €
HY, ,(R), u being regular on R/HP, (R). Since X'q is zero in R[X']/(X"y)

we see that g € H(Oxﬁy) (R[X']/(X'y)). But depth R’ #depth A’ by hypothesis.

Then depth R’ > r + 1 and so depth R[X']/(X'y) > 0. It follows that
H?I?y)(R[X’]/(X’y)) =0 and so q is zero in R[X']/(X'y), that is ¢ is zero in
R (apply to q the retraction R[X']/(X'y) — R, X’ — 0 of the inclusion).
Now, let ¢ = Y>_, : X" € R'[X'] be such that (X'—u)g = 0in R[X']/(X"y).

The expression of g as a polynomial in R[X']/(X'y) could be “unique” if we ask
for i > 0 either ¢; & (y), or ¢; = 0. From (X' —u)q = Efié (i1 —qu)X"" =0
it follows g; = 0 for 1 < ¢ < e by “unicity” of the expression of q. So we may
suppose ¢ = go € R, which was already settled. Note that R'/(Y’, X' — u) &

R/(uy) and let v € R be inducing a nonzero element in H& y)(R). As above
v € yR because otherwise v € H& y)(R[X’]/(X'y)) = 0. But then v induces
a nonzero element in H?I’y)(}_l/(uy))7 i.e. depth R/(uy) = 0. Hence depth

R' = r + 2, a regular sequence being f1..., f,,Y', X' —u.

(R) = {v € R|Anngv is (v, y)-primary}.

Theorem 2.6 Let R’ be the Rees algebra of A[X'], X' = (X1,..., X)),
s > 1. Then depth A[X'] <depth R' <depth A[X'] + 1.

The proof follows from Lemma 2.1, Proposition 2.4 and Lemma 2.5 applied
recursively.

Example 2.7 Let u,v be two algebraically independent elements over K
and A := K[u* uv,uv3,v¥. Then dim A = 2 and A = K[Xy,...,X4]/J,
where J = (X1X4 - X2X3,X§) — X2X42,X22X4 - X1X32,X12X3 - XS) We
see that X3(X2, X3, X4) C (X1) + J and so X is maximal regular sequence
in A, that is depth A = 1. By Proposition 1.1 we have R = S/I;, where
S=K[X,Y],I;=J+JY)+T+ H, J(Y) being obtained from J changing
X by Y, H being as in 1.1, and T = (XY, — X2Y3,X§Y3 — X2X4Y4,X22Y4 —
X1X3Vs, X2V5— X2Ys, X3V2— XoV2, XoYaYi— X1Y2, X1Y1Y3— XoV2). Then
$§($2,$3,$4,y1,y2,y3,y4)

C (z1) and so depth R/(x1) = 0. Thus depth A =depth R = 1. It is not
difficult to show that depth R’ = 2 =depth A’, but the Rees algebra R” of
A" := A[X’, X"] has depth = 14+depth A” = 4.
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