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CLASSES OF MODULES RELATED TO

SERRE SUBCATEGORIES

Septimiu Crivei and Iuliu Crivei

Abstract

Let R be an associative ring with non-zero identity. For a Serre

subcategory C of the category R-mod of left R-modules, we consider the

class AC of all modules that do not belong to C, but all of their proper

submodules belong to C. Alongside of basic properties of such associated

classes of modules, we will prove that every uniform module of AC has

a local endomorphism ring. Moreover, if R is a commutative ring, then

every torsionfree faithful R-module of AC is isomorphic to the injective

hull of R and its endomorphism ring is a division ring.

1 Introduction

In recent years certain classes of modules have been studied due to their im-
portance for ring theory or theory of categories. We mention here hereditary
torsion or pretorsion classes (e.g. [6]), Serre subcategories of R-mod (e.g. [4]),
natural or prenatural classes (e.g. [1], [9]), open classes (e.g. [3]). All of them
are formally defined as classes of modules closed under at least two of the
following: submodules, direct sums, direct products, homomorphic images,
isomorphic copies, extensions and injective hulls. For instance:

(1) hereditary pretorsion classes are closed under submodules, direct sums
and homomorphic images;

(2) hereditary torsion classes are closed under submodules, direct sums,
homomorphic images and extensions;

(3) torsionfree classes are closed under submodules, direct products, exten-
sions and injective hulls;

(4) Serre subcategories are closed under submodules, homomorphic images
and extensions;
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(5) prenatural classes are closed under submodules, direct sums and homo-
morphic images;

(6) natural classes are closed under submodules, direct sums, homomorphic
images and extensions;

(7) open classes are closed under submodules and homomorphic images.

For a class A of modules, it might happen the following phenomenon: none
of the modules of A belongs to one of the previously mentioned classes, but
all the proper submodules of modules of A belong to that specific class.

Throughout the present paper we will refer to a class of modules related to
Serre subcategories of R-mod, whose introduction is motivated by the situation
described above. Thus, for a Serre subcategory C, we will consider the class
AC of all modules that are not in C, but all of their proper submodules are in
C.

For instance, let C be the class of all noetherian modules, which is obviously
a Serre subcategory. Then a module A ∈ AC if and only if A is not finitely
generated, but every proper submodule of A is finitely generated. These mod-
ules are called a.f.g. (almost finitely generated) and were studied by W.D.
Weakley [7]. The injective hull of a discrete valuation ring is always an a.f.g.
module [7, p.190].

Now let us mention the notation and some preliminary definitions. Throu-
ghout the paper R will denote an associative ring with non-zero identity and
all modules will be left unital R-modules.

For a module M we will denote by AnnRM its annihilator in R, by
EndR(A) its endomorphism ring and by E(M) its injective hull.

A submodule N of a module M is called essential if for every non-zero
submodule L of M we have N ∩L 6= 0 [8, p.137]. A submodule N of a module
M is called superfluous if for every submodule L of M , N + L = M implies
L = M [8, p.159].

A non-zero module M is said to be hollow if every proper submodule is
superfluous in M [8, p.351]. If M has a proper submodule which contains all
the other proper submodules, then M is called a local module [8, p.351].

For the torsion-theoretical notions and properties we will sometimes use,
the reader is referred to [2].

2 Basic properties

Recall that a non-empty class of modules is called a Serre subcategory of the
category R-mod of left R-modules if it is closed under submodules, homomor-
phic images and extensions.
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Immediate examples of Serre subcategories are: every hereditary torsion
class, every cohereditary torsionfree class [2, p.44], every stable cotorsionfree
class associated to a hereditary torsion class [2, Propositions 7.2 and 7.5], the
class of all noetherian (artinian) modules.

In what follows C will denote a Serre subcategory of R-mod.

Now we consider the class that will be studied throughout the present
paper. Thus, we will denote by AC the class consisting of all modules A with
the properties that A /∈ C and B ∈ C for every proper submodule B of A.

We collect some first properties of the class AC in the following proposition.

Proposition 2.1 (i) AC is closed under non-zero homomorphic images.
(ii) AC is contained in the class of hollow modules.
(iii) Every module of AC is indecomposable.
(iv) Every simple module belongs either to C or to AC.
(v) Let A ∈ AC. Then for every B ∈ C, HomR(A,B) = 0.
(vi) If C is the torsion class for a hereditary torsion theory τ , then either

AC = ∅ or every module in AC is cyclic.

Proof. (i) Let B be a non-zero proper submodule of A. Then A/B /∈ C, because
C is closed under submodules and extensions. Moreover, A/B has every proper
submodule in C, because C is closed under submodules and homomorphic
images.

(ii) Let B be a proper submodule of A. Then A/B ∈ AC by (i). Suppose
that there exists a proper submodule C of A such that B + C = A. Then we
have the isomorphism A/B = (B + C)/B ∼= C/(B ∩ C). But C/(B ∩ C) ∈ C,
since C ∈ C. Hence A/B ∈ C, which is a contradiction. Therefore every proper
submodule B of A is superfluous, i.e. A is hollow.

(iii) It follows by (ii), since every hollow module is indecomposable [8,
p.352].

(iv) Clear.
(v) Let B ∈ C. Suppose that HomR(A,B) 6= 0 and take a non-zero

f ∈ HomR(A,B). Then Imf ∈ C and Ker f 6= 0. Now it follows by (i) that
Imf ∈ AC , which is a contradiction.

(vi) Suppose that AC 6= ∅, say A ∈ AC . Then A is not τ -torsion and its
torsion submodule Tτ (A) is the unique maximal submodule of A. Hence A is
local, so that A is cyclic [8, p.352]. �

Corollary 2.2 Let C be a hereditary torsion class. Then AC is contained in
the corresponding cotorsionfree class, that is the class of all modules A such
that HomR(A,B) = 0 for every B ∈ C.
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Remarks. (i) In general, a class AC does not coincide either with the class of
hollow modules or with some cotorsionfree class of modules.

(ii) There exist Serre subcategories C such that AC = ∅, others then the
trivial case when C is R-mod.

Example 2.3 (i) Let C be any Serre subcategory and take R to be a local
ring, that is clearly hollow, with the maximal ideal M . Suppose that R ∈ AC .
Then M ∈ C and R/M ∈ AC by Proposition 2.1, hence R/M /∈ C. Now let a
be a non-zero element of M . Then Ra ∈ C has a maximal ideal N . It follows
that R/M ∼= Ra/N ∈ C, which is a contradiction. Therefore, R is hollow, but
R /∈ AC for any Serre subcategory C.

On the other hand, every cotorsionfree class corresponding to a hereditary
torsion class is closed under homomorphic images [2, Proposition 7.2], which
is not the case for a class AC (see Proposition 2.1). Therefore, AC does not
coincide with any cotorsionfree class of modules.

(ii) Let C be the torsion class for the Dickson torsion theory, that is gen-
erated by all simple modules. Assume that AC 6= ∅. Then by Proposition 2.1,
every module in AC is cyclic, hence AC contains a simple module, which is a
contradiction. Therefore AC = ∅.

Now let us consider the extreme case when C is the least possible class.

Theorem 2.4 C = {0} if and only if AC is the class of all simple modules.

Proof. Suppose first that C = {0}. Then every simple module is in AC . On
the other hand, if A ∈ AC and B is a proper submodule of A, then B ∈ C, i.e.
B = 0. Hence A is simple.

Conversely, suppose that AC is the class of all simple modules. Assume
now C 6= {0}, say 0 6= A ∈ C. Let a be a non-zero element of A. Then there
exists a left ideal I of R such that R/I ∼= Ra ∈ C. Since I is included in a
maximal left ideal M of R, R/M ∈ C. But this is a contradiction, because
R/M is simple. Therefore C = {0}. �

Corollary 2.5 If AC contains a non-simple module, then C contains a simple
module.

Theorem 2.6 Let

0 −→ A
f

−→ B
g

−→ C −→ 0

be a short exact sequence of modules such that A ∈ C, f(A) is superfluous in
B and C ∈ AC. Then B ∈ AC.
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Proof. We may assume that A is a submodule of B.
First, if B ∈ C, then C = g(B) ∈ C, contradiction. Hence B /∈ C.
Now let D be a proper submodule of B. Then D+A is a proper submodule

of B, because A is superfluous in B. Hence D/(D∩A) ∼= (D+A)/A is a proper
submodule of B/A ∼= C ∈ AC . Therefore D/(D ∩ A) ∈ C. But D ∩ A ∈ C,
hence D ∈ C. It follows that B ∈ AC . �

Theorem 2.7 Let A ∈ AC, B a non-zero proper submodule of A and C a
proper submodule of B. Then there exists D ∈ AC such that B/C is a proper
essential submodule of D.

Proof. Let i : B → A and j : B/C → E(B/C) be the inclusion homo-
morphisms and p : B → B/C the natural homomorphism. By injectivity
of E(B/C), there exists a homomorphism f such that fi = jp. Denote
D = f(A). It follow that D ∈ AC and D is an essential extension of B/C and
an essential submodule of E(B/C). Moreover, B/C is a proper submodule of
D, because B/C ∈ C. �

Corollary 2.8 Let A be a non-simple module in AC. Then there exists a
simple module S ∈ C and a uniform module D ∈ AC such that D strictly
contains S and is essential in E(S).

Proof. Let a be a non-zero element of A such that Ra is a proper submodule
of A. Now take B = Ra and C a maximal submodule of B in Theorem 2.7. �

Proposition 2.9 Let A /∈ C be an artinian module. Then there exists a sub-
module B of A such that B ∈ AC.

Proof. Since A is artinian, the set of all submodules of A which are not in C
has a minimal element B, that is obviously in AC . �

3 Endomorphism rings of modules of AC

Throughout this section we will establish a few results on the endomorphism
ring of a module of AC , either arbitrary or more particular, such as uniform
or faithful.

Theorem 3.1 Let A,B ∈ AC and let f : A → B be a non-zero homomor-
phism. Then f is an epimorphism.

Proof. Obviously, f(A) 6= 0 and by Proposition 2.1, f(A) ∈ AC . If f is not
an epimorphism, then f(A) is a proper submodule of B, hence f(A) ∈ C,
contradiction. Therefore f is an epimorphism. �
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Corollary 3.2 If A ∈ AC, then EndR(A) is a domain.

According to Corollary 2.8, if AC contains a non-simple module, then AC

contains a uniform module as well. In the case of such a module, we have
more information on its endomorphism ring.

Theorem 3.3 Let A ∈ AC be a uniform module. Then EndR(A) is a local
ring.

Proof. Since A 6= 0, we have EndR(A) 6= 0. Now let f and g be two non-zero
endomorphisms of A which are not isomorphisms. Then by Theorem 3.1, f
and g are epimorphisms, hence Ker f 6= 0 and Ker g 6= 0. Since A is uniform,
we have Ker f ∩Ker g 6= 0. But Ker f ∩Ker g ⊆ Ker (f +g), so that f +g is
not an isomorphism. Therefore EndR(A) is local [5, Chapter 3, Lemma 3.8].
�

For the rest of the paper, the ring R will be assumed to be commutative.

Theorem 3.4 Let A ∈ AC. Then:
(i) AnnRA is a prime ideal of R;
(ii) A is divisible over the domain R/AnnRA.

Proof. (i) Let r, s ∈ R such that rs ∈ AnnRA. Then rsA = 0. Assume that
s /∈ AnnRA. Then sA 6= 0 and by Theorem 3.1 we have sA = A, so that
rA = rsA = 0, i.e. r ∈ AnnRA. Therefore, AnnRA is a prime ideal of R.

(ii) The R-module A is also an R/AnnRA-module in the usual way, that
is r̄a = ra for all r̄ = r + AnnRA ∈ R/AnnRA and a ∈ A. Then by Theorem
3.1, r̄A = rA = A. Consequently, A is divisible over the domain R/AnnRA.
�

Theorem 3.5 Let A ∈ AC be a faithful module. Then:
(i) R is a domain;
(ii) If A is torsionfree, then A ∼= E(R) and EndR(A) is a division ring.

Proof. (i) This follows by Theorem 3.4, since AnnRA = 0.
(ii) Since A is a torsionfree divisible R-module by Theorem 3.4, it follows

that A is injective [5, Proposition 2.7]. Let a be a non-zero element of A.
Then AnnRA = 0, hence Ra ∼= R. But A ∈ AC , so that A is indecomposable,
hence A = E(Ra) ∼= E(R).

Now let f be a non-zero endomorphism of A and assume that Ker f 6= 0.
Let b ∈ Ker f and let r be a non-zero element of R. By divisibility of A,
there exists a ∈ A such that ra = b. Then rf(a) = f(ra) = f(b) = 0, whence
f(a) = 0, i.e. a ∈ Ker f . But then b ∈ rKer f . Therefore Ker f ⊆ rKer f .
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The converse inclusion obviously holds, so that we have Ker f = rKer f . This
means that Ker f is a torsionfree divisible module, hence Ker f is injective.
But then Ker f is a direct summand of the indecomposable module A, which
is a contradiction. Therefore f is a monomorphism, hence an isomorphism by
Theorem 3.1. �

Corollary 3.6 Let R be a Dedekind domain and let A ∈ AC be a faithful
module. Then A is injective.

Proof. By Theorem 3.4, A is a divisible R-module, hence A is injective [5,
Proposition 2.10]. �

Remark. Some of the properties proved here when C is a Serre subcategory,
namely Theorem 2.4, Corollary 2.5 and Proposition 2.9, still hold when C is
an open class and consequently when C is a natural or even prenatural class.
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”Babeş-Bolyai” University,
Cluj-Napoca,
Romania
e-mail: crivei@math.ubbcluj.ro

Department of Mathematics,
Technical University,
Cluj-Napoca,
Romania


