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Preface

Here you are some papers of the participants at the Euroconference on Algebra, i
August 2000, held at the Ovidius University of Constantza.

The aim of these proceedings is to give the readers an idea about the scientifi
activities developed in the afternoons of the con ference.

The lectures given in the mornings have been published in NATO Science Series
11, Mathematics, Physics and Chemistry, vol. 28 appeared at Kluwer Academi
Publishers in 2001,

Six of the papers have continued ideas presented in the morning sessions, namel
they are concerned with representation theory of groups and algebras - (Gudivok é
Chukhral, Antipov & Antipova & Kemer, Kirichenko, Malinin, Rump, Williams).
Almost all the other papers present some new propertics of group algebras, Li
superalgebras, groups, special modules and rings.

K. W. Roggenkamp’s paper is concerned with general ideas on the rdle of universitie
in our days.

Papers have been included into the volume following the opinion of referees.

We address our thanks for the good job done by Dr. Viviana Ene in preparation o
the volume for being published.

And again we are grateful to the University of Constantza and the local people i1
organizing committee who have done the sessions running smoothly.

Mirela Stefanesc

K.W. Roggenkam;
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CONJUGACY CLASSES OF THE GROUP
OF UNITS IN GROUP ALGEBRAS OF
FINITE p-GROUPS

A.A. Bovdi and C. Polcino Milies
Dedicated to Professor L.G. Kovdcs on his 65th birthday

Abstract

Let Fon G be the group algebra of a finite p-group G over a field
Fpn with p™ elements, and V (Fp» G) the subgroup of units of augmentation
1. We investigate the conjugacy classes of V(F,= G), showing that p?™
divides the order of the conjugacy class |Ca| for a noncentral element
a € F,n G and V(Fyr G) contains a conjugacy class of order p*”, if a
nonabelian finite p~group G has a factor group G/H such that its centre
is of index p°.

Introduction®.

Let Fpn G be the group algebra of a finite p-group G over a field Fp» with p™
elements, and V (F,» G) the subgroup of units of augmentation 1. The group
V (Fp= G) is always a finite p-group of order p™(G!=1) and it coincides with
1+ A (Fp» G), where the augmentation ideal A (Fp» G) of Fpn G is nilpotent.
One the hardest and most important problems for modular group algebras
consists of describing the structure of V (Fp» G), which has a complicated
structure, even fora fairly simple p-group G.

Note that the Lie structure of the associated Lie algebra, of Fyn G reflects
well the characteristics of the group of units and there is a close relationship
between the properties of these two structures. Moreover, the Lie methods and
the Jennings’theory made possible to characterize the group of units V (= G)
under different group-theoretical assumptions and to determine the exponent
and the nilpotency class of V (F,» G) for some classes of p-groups G[2].

Key Words: group algebra, group of units, conjugacy class.

Mathematical Reviews subject classification: Primary 16U60, 16534. Secondary 20C05.

*The research was supported by the Hungarian National Foundation for Scientific
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2 A.A. Bovpi AND C. POLCINO MILIES

Recently, Bovdi and Patay [4] described the centre of V (Fp= G). In this
paper we study conjugacy classes of V (Fp» G) for a finite p-group G. We
improve the result of Rao and Sandling [8] and we prove that p?” divides the
order |C,| for every noncentral element a € Fp» G, showing that V (Fp- G)
contains a conjugacy class of order p?”, if the nonabelian finite p-group G has
a factor group G/H such that its centre is of index p?.

CONJUGACY CLASSES

Coleman {5] has shown that, if G is a finite p-group and C,, is a conjugacy
class in V (Fy» G) that contains an element from G then C, NG is a conjugacy
class in G. Now we will give a conjugacy class C,, containing no elements u
from G such that |Cy) > 1.

We freely use the fact that if e(z) denotes the sum of coefficients of the
element z_€ FG, then € : FG — F is a homomorphism. Also we use the
notation M to indicate the sum of all elements of a finite subset M C G in
FG.

Let ¢ be the nilpotency class of a finite p-group G. We denote by G,
the (c — 1)-th term of the lower central series of G.If g € G,_1\G.,
then the map h — (g,h) is a homomorphism of G onto the central
subgroup W, = {(g, h)|h € G} and the conjugacy class C, of G coincides with
gW,.

Proposition. Let G be a finite p-group and let g1, 92, ..., gs be elements of
the subset G._1\G. not pairwise conjugate in G. If T is a field of characteristic
p and ((G) is the centre of G, then the conjugacy classes

{Cgi-i-zg.- ' 0# Zg: € (]FC(G))W,W) 1=1,2, ...,s}

of V (FG) are pasrwise different and these conjugacy classes do not contain
elements from G.

Proof. Let g € Go_1\G,. First, we will prove that, for any 0 # z €
(F¢ (G’))wg, the element g + z is not conjugate to elements ¢f G in V(FG).

Suppose that y (g +2)y = g1 € G. It is easy to see that Wg and gWg are
central elements of the group algebra, hence g Wg =y g+ z)Wgy =

= y‘lgwgy = gwg. It follows that g; = gw, for some w € W and the elements
g and g; are conjugate in G. Therefore, we can actually choose y € V(FG)
such that y~'(g + z)y = g. Set H = Cg(g). Clearly, Supp(z) C H and
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elemen
Y = Zo + T1u1 + ... + Tyu,, where 3; € FH and 1,up, ..., %s 3€

in distinct cosets of H. Then

(g+ 2)z0 + (94 2)T1U1 + - + (g + 2)TsUs =

=09 + 219(g, u7 Yug + - + 259(g,us s

Since (g,u;') is central and belongs to H, from the previous ©

obtain that (
zoz =0 and a:,-(1+g—1,z— (g,u;l)) =0 .

for i = 1,2,...,s. Recall that if e(z) # 0, then z is a unit. Sinc:(g’ui ) €t
and Supp(g='2) C g~ Gy, # Guit follows that 1+ g~'z — (9,47 ) # 0 af}dh
(1) we obtain e(z;) = 0 for i > 1. SimilarLy, e(zo) = 0 and e(y) = 0, Whic
impossible. .

Let gi,9; € Gou1\Ge and 0 # 24,0 € (FC(G))W,, . Suppose that

vy g+ z)y = g5 +v;

quality 3

nd by the previ

for some 2; and vj. If ¢ = j, then y ™' (g; + (2 —vi))y = 9: & t conjugate

staternent v; = z;. Finally, assume that g; , g; € G.—1\G are B9
G. Then

giWy =y (gi + 2)yWy, = (g5 + v;) Wy, = giWo T viWe:-

Therefore, gjﬁ/; is a central element in IF'G. It follows that (gi,g)vgg.’ = ‘
for any g € G and W,, C W,,. By symmetry we obtain that W = Ws-

viWe: =0, g:W,, = g;W,, and i = j, which is impossible.

As it is well-known [3] that, if G is an extension of a finite grouP M _Of’
order by the dihedral group Dg of order 6 , then V(F2G) contains a COD‘]UE
class of order 2. Rao and Sandling [8] prov-ed that if G is a finite p-group, p
p? divides the order of every non singletorr conjugacy class of Vng.G)- In
the question of whether there exists a conjugacy class of order P ™in VQFP
is still open. We will show that there exists u € Fpn G such that a COHJ“{
class C,, is of order p?", if G has a factor group G/H such that its cer'lt‘
of index p®. We consider the following thxee cases in which the centraliz(

some element has this property.

Case 1. Let G be a finite 2-group amad G has a factor &roup G/H
commutator subgroup of order 2 and its centre is of index 4- Then ther e’
elements a,b € G such that (a,b) = ¢ & H. Let L/H be the centraliz
{aH,bH} in G/H. Then L is normal in G and its index equal$s 4. The ele!
H is central in Fo» G and

2aH = aHz and =bH = bez,
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for every z € Fan L. Choose any transversal w of L in G’. Then L= w(l+ c)ﬁ'
and y = 1 + a(a® + Bdc)H is a voncentral unit in Fon G for o # B, where
a, B € Fan . By (2), the element © = (29 + z1a) + (22 + 230)b € V(Fa- G), with
z; € Fau L, belongs to the centralizer of the element y = 1 + a(o® + f@c)H if
and only if

(a3 + Baic)za(1+ )H =0 and (0@ + BEc)zs(1 + )H = 0.
Since o + 8 # 0, these conditions can be written as
Lzo =0 and Lz = 0. (3)

It follows that z and 3 are not units and, as it is well-known, we
have that e(z2) = e(z3) = 0. Conversely, any elements 3,23 € Fon L with
e(zz) = e{z3) = 0 satisfy condition (3).

We have proved that the unit z = (zq + z1a) + (22 + z3a)b belongs to
the centralizer of y = 1 + a(al + Bic)H if and only if elzg +z1) = 1 and
e(z2) = e(z3) = 0. Therefore, we showed that the element y € Fa» G has the
centralizer of order 21¢1=3 and the order of the conjugacy class Cy equals 22™.

Case 2. Suppose that p > 2 and there exist a factor group G/H
with commutator subgroup of order p and elements a,b € G such that
P =<a,b,H > /H is a non-metacyclic subgroup of G/H.

According to Lemma 2.5 in [1], the elements a and b can be chosen in such
a way that P has the following defining relations

(aH)™ = H, (bH)?" = H, b"'abH = acH, (cH)® = H, (a,c),(b,c) € H,

where ¢ = (a,b) and p™,p™ are invariants of the abelian group P/ < ¢H > .
It is clear that ¢ € H; =< aP,b?, H > and we can suppose that H is chosen
in such a way that H = H;. Again, let L/H be the centralizer of {aH,bH} in
G/H.

We set

y= (-1 a—- 1)@ and p = (c — 1)P72H,

where w i8 any transversal of HG» in L. The ideal I(H) generated by the
elements of the form h — 1 with h € H is such that Fp» G/Z(H) = Fpr [G/H].
One verifies easily that any element u € V(Fy» G) can be written as

p—1
u=z+ Y (a—1)(b—1)wy, (4)

1,j=0
iti21
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where z,w;; € Fpa L.

We wish to decide when u belongs to the centralizer Cy (1 + y). This
condition is satisfied if and only if the Lie commutator [y, u] = 0.

We will freely use the following facts:

1. the well-known identities [ujug,us] = [u1,us]us + u1lusz, us] and
[u1, u2us] = [uy, uslus + uslu1, us), where u; € Fpn G;

2. if the subgroup W of G contains the commutator subgroup G’, then in
the product uyus...usW every two elements u; and u; commute.

We first establish a number of results, which will be needed to compute
the Lie commutator [y, u].

Of course, aF = 0 for every a € Z(H). Since L/H in the centralizer of the
elements ¢H and bH in G/H, we have [w, (a — 1)" (b — 1)¥] € I(H) for every
w € Fpyn L and

[w, (a — 1)" (b~ 1)¥H] = 0. (5)

Recall that L = @(c — 1)y = @(c — 1)P~H. We claim that the element
(¢c—1)*H is central. Indeed, the element cH is central in G/H and (c,g) € H
for all g € G, thus

g7 c—1)*Hg = (c(c,g) - )*H = (c - 1)*H. (6)
Suppose that [w,y] # 0 for some w € Fpn L. It is easy to see that
[w, @] H = w; (c — 1)H, where w; € Fpn L. From (5) and (6) we have
[w, y)=[w, (b=1)P"} (a—1)P"}(c=1)? 2 Ao+ (b—1)" " (a—1)P" (c-1)?~2 H[w,

= (-1 a~ 1P - )P Huy = (b= 1P a-1)P" wH,  (7)

where W =< ¢, H > . Since G’ C W, we conclude that [w,y] is central in
Fon G-

Let i4+j > 1. Note that a?, b € H so it follows that (a—l)PI:T = (b—l)”ﬁ =
0. Since zH is central in Fyn G for any z € Fp= G, according to (7), we have

1= - 1Yw,y=(e - 1)'(b- 1)/ (b — 1) ' (a—- )P w H=0. (8
Clearly, (b— 1)y = y(a — 1) =0 and (7)-(8) yields

[y’u] = [yvz] + Z [y, (@ — l)i(b - l)j]wij =
i § 214,j=0

= [y’z] + i[ya (a‘ - l)i]wio + i[ya (b - l)i]wm- (9
=1 i=1



6 A.A. Bovpl AND C. POLCING MILIES

Since G’ C L, the element zL is central for any ¢ € Fpa G and, as a
consequence of this argument and (6), we have

(a-1)(c—1)b-1)*a-1)P"@ =(a— 1)(b—1)Fa—1)?"(c—1)P"'Ho =
=(a-1)0b-1)*a-1PL=(a-a-1PLG-1)* =0 (10)
It can easily be observed that
(a—=1)(b—=1)=(b-1){((a~1)(c—1)+(a—1)+(c—1))+(a—1)(c—1)+(c—1) (11)
and, in view of (10), a routine calculation shows that
(@a-Dy=(a-10b-1) b-1)P*(a- 1P =
=b-)(a-1)b-1)P"Ha-1)P D+ ((b-1)P 1+ (b~ 1)) (a—-1)P 'L =
= (b—1)-(a=1)(b—1)-(~1)P"3(a—1)P "' n@+((b—1)P 1 +(b=1)P"2)(a—1)P"'L =
= (b-1)*(a—1)(b-1)P*(a= 1> 9@ +2((b—1)* "' + (b~1)P"*)(a— )P L =
=...=(b-1)P"2(a—=1)(b-1)(a—1)P~ 9@+ (p—2)((b—1)* '+ (b—1)?"2) (a—1)?"' L=
=—((b-17" + (- 1P ) a- 1)L (12)

and |y, (e — 1)] = —(a — 1)y. Since G’ C L, the element (a — 1)y is central by
(12) and for k > 1 we have

[y, (a=1)*] = —(a=1)y(a—1)F~! = (b-1)P" +(b-1)P"2)(a—1)*"'(a—1)* 'L = 0.
As before, a similar argument shows that
b-17a—-1*0-1)(a -1 (c—1)P"'BH =0

and
yb—1)=—(b-1P"((a- 1)P2 + (a - 1)P"HL.

Thus
wb~1=y(b-1)==(-1""((a -1 +(a - 1)P)L,
hence y(b — 1) is central. Thus, for k& > 1, we conclude
v, 0 - =y~ 1)* = (b-1)*"y(b-1) =0

Note that Zwg = e(wkz)f. By the preceding discussion, it follows that the
Lie commutator (9) reduces easily to the form

v u] = [y, 2] +e(wio((b — 1P~ + (b= )P )@ — 1P L~
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—e(wor)(b— )P ((a— 1)P™* + (a — )P 2)L.
Now suppose that L/H is abelian. Then [@,2] € Z(H) and

[v,2] = (b — 1) (a— 1)P~1(c — 1)P2H[B, 2] = 0.

We obtain that, if L/ H is abelian, then u belongs to the centralizer Cf,. (14
y) if and only if
e(wyo) =0 and e(wor) = 0. (13)

Since [V (Fp= G)| = |Fpn ['¢1=* and by (13), the centralizer of y € Fpn G has
the order p™I¢1=3) and the order of the conjugacy class Cy, equals p*™.

Case 3. Now assume that p > 2 and G has a factor group G/R with
commutator subgroup of order p such that G/ R =< a,b, R > /R is a metacyclic
group.

By theclassification of metacyclic p-groups, which was obtained by Newman
and Xu in[6], the elements a and b can be chosen such that P has the following
presentation:

P = (aRbR | @R = B, (RY™" = @R, b bR = a7 R),

where s, k are non-negative integers, r > 1 and k < 7. Since the element a?” H
has order p, we conclude that s+ k = 1 and the group P splits {8].
Let H=<b?, R > . Then G/H has the following presentation:

r+1 ‘

o =1 (mod H), =1 (mod H), b lab=a'*®  (mod H). (14)
We set
y= (- 1P a— 1) " - 1)P2H = (b— 1)P Ha—- 1P P H,
In this situation, the identity (11) has the form
@-Dp-1=G-D(@-1"*" +(a=1)+@-17)+
+(@—1)P"* 4 (a—1)?" (mod Z(H)). (15

Let W =< a? ,H > . As in (9), it is easy to show that (a?” ~ 1) H i
central in F,» G.

Thus R
(a~ 1P b —-1)*a—-1)P" "1(a? ~1)P2H =

= (a—1)(b-1)*a- 1) 'W =0, (16
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since (a — 1)W is central and (a?” — 1)W = 0.
We use the preceding method and computations as in (12) to establish

(a—Dy=(@@-10b-1)-(b—1?2*(a—-1)?"1(a? -1)?2H = .
= (b-1)(a=1)(b—1)P2(a—1)?"" P L H 4+ ((b—1)""'+(b-1)P"2) (a—1)? "W =
== B-DPW = ((b— )P+ (b= 1)P %) (a — 1)P W,
by (16). Therefore,
(a—Vy=0b-1P W+ ((b-1)" = (b-122)(a—- 1) W. (17)

As G' C W, it follows that (a — 1)y is central in Fp» G and, for k > 1, we

have
(a= 1y =(a-Dyla— 1" = b~ 1) (@~ D',

by (16). It is easy to see that y(a — 1) = (b — 1)P~1W¥ and for k > 1
y(a—1)% = (b—1)P" (a — )W,
Therefore,
[y,a—1]= (b0 —1P7" + (b~ 1)P)(a— 1" 'W (18)

and [y, (a — 1)*] =0, for k > 1.
Finally, as before,

(b—1)P" a—1)P (b —1)(a — )Pt (a? —1)P2H =
(b—1)P"a—1)P" "} b—1)(a— 1YW =0.
It follows that
[, b—1=0b-1Pa-1)""3 (a—1)(b-1)-(a—1)(a” —1)P~2H+
+b-1P (e =1 "+ (a-1)P W =..=
=—(b=1P"Y(a=1)" " + (a — 1P )W, (19)

hence y(b — 1) is central and [y, (b — 1)*] = 0, for k > 1. It yields that, if
i+ 7 > 1, then ' .
yla—1)b-1Y =0 (20)

One verifies easily that any element u € V (IF,» G) can be written as

pr-)d —1p-1

u= Z Zwij(a ~1DHb— 1) +q,

i=0 j=0
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where w;; € Fy» and o € Z(H). As before, aH =0, thus the Lie commutator
[a,y] = 0. We determine when u belongs to the centralizer Cy (1 + y). This
condition is satisfied if and only if the Lie commutator [y,u] = 0. By (18)-(20),
we have

[y’u] = wlO[yra'_ 1] + wo1 [y) b 1] =

=wio((b— 1P + (b - 1P + (b — 1P ) (a— 1P W -
—wor (b — 1P (@ = 1) + (a — 1)P~H)W.
We conclude that u belongs to the centralizer Cv (1 + y) if and only if

w10 = 0 and Wo1 — 0.

Therefore, the centralizer has the order |Fpn ['G’_3 , so it follows that the order
of the conjugacy class Ci4y is p*™.

~Theorem. Let G be a finite p-group and F a field of characteristic p.
u is a noncentral element in FG then the conjugacy class Cy, = {z7'uz |z €
V(FG)} has the following properties:

(i) if Fis an infinite field then C, is infinite;

(i) if |F| =p", then p*" | |C4|.
Moreover, if a nonabelian finite p-group G has a factor group G/H such tha
its cenutre is of indez p?, then V (Fpn G) has a conjugacy class of order |Fyn |2

Proof. Let H = Cg(u) and a € G\H. Then (1 ~a) !(a — a) € V(FG) fo
l#a €F, 1-a)(a—a)u(l-a)(a— @) = (a—a) ula —a) and the
elements from the subset

{a—a)'u(la—a) |1 #£a ek}

are pairwise different for any a. Indeed, if (a— ) "*u(a-a) = (a—B) " 'u(a—p)
then

ua—a)a—B)=ule-B+B-a)a-B) =ull+(B-a)a-H7)

and we obtain
(a=B)(ula—a)™ - (a — a) tu) =0.
Therefore, ua = au, which is impossible. Thus, if F is infinite, then C,, i
also infinite and, if F is a finite field then |C| > |F .
Let Fp» be a finite field of p” elements and denote by Cr,.c(u) th
centralizer of a noncentral element v in Fpn G and V = V(Fp» G). Sinc
Cr,nc(u) = Fpn + Cy(u) and |Cr,nc(w)| = p™ - |Cy (u)|, we have

[V : Cy(u)] = |Fpn G : Crn g (u)| = P, (21
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where k is the codimension of the linear subspace Cr,. g(u) of Fpn G over Fyn .
Suppose that Cf,. ¢ (u) has the codimension k = 1. Then |Cy| = p™, whence
it follows that
{u,(a—a)'ula—a) |1 #a € Fym}

is the conjugacy class C,, of order p™, for any a € G\ H.

Clearly, if g € G\H, then (g — §) " 'u(g — 6) € C,, for all
0 € Cr,.g(u) N A(Fpn G), where A(F,» G) is the augmentation ideal. We will
prove that

(g—06)""u(g—8) = g ug for all § € Cr,.a(u) N A(F,- G).

Indeed, assume that |Fpm | > 2 and (g — 6) " 'u{g — 8) = (g — o) 'ufg — @)
for some a € Fyn \{0,1}. Then, (o — 8)(u(g — 6)™* — (g — 8)"'u) = 0 and we
have a contradiction, since a — & is a unit.

Therefore, we have (g — §)"'u(g — 6) = g 'ug, for all 6 € Cr,.a(u) N
A(Fp» G). From this, is follows that d(ug™ —g~*u) = 0 for all § € Cr,.q(u)N
A(Fyn G). Let Z(H) be the left ideal generated by h — 1 with h € H. Clearly,
h—1€ CFnc(u)NA(Fy-G) for all h € H and g~ 'u — ug™" belongs to the
right annihilator of the ideal Z(H). It is well-known ([7], Lemma 3.1.2) that
every element from the right annihilator has the following form

~

1 1

g u—ug™ = H(y +mva + ... + %0r),
where H = Sherh, vy € Fprn and G = HU Hvo U ... U Hu,.

Let z € Fpn G and denote by z(d) the coefficient of d € G in 2. If
Huv; = Hg* for some 14, then

v = [g7" ul(g") = u(g"") —u(g"*?) = 0.

Let Hv; # Hg", for all k. In this case, ¢ cannot be 1 and therefore
v; # 1. Then there exists a € G\H such that ag™! = v;, so g~lug =
(a — ) 'u(a — a) for some o € Fp» and (a — a)g™' € CF,.¢(u). We obtain

1

ag”'u ~ugla=alg lu—ug™).

We remark that a cannot be 0, otherwise v; = ag™! € H, ie. v; = 1,
which is not the case. It yields that

v =197 ul(w) = a7 ag ™ ul(vi) = o7 ug, ul(vi) = 0.

We conclude that [g7%, 1] = 0, which provides the concluding contradiction.
Therefore, CF,.c(u) has the codimension k > 1 and by (21) p*® divide the
order of |Cy].
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We will prove that V (Fp- G) has a conjugacy class of order p*", if G has
a factor group G/H such its centre is of index p®. Then the commutator
subgroup of G has order p.

If Gis a 2-group, the statement of the Theorem follows from case 1.

Assume that P =< a,b, H > /H is a non-metacyclic subgroup of G/H
with commutator subgroup < ¢H > of order p. Then the centralizer of the
elements aH and bH in G/H coincides with the centre of G/H and, as we
have seen in case 2, V (F,» G) has a conjugacy class of order p*™.

Therefore, we can assume that every subgroup P =< a,b,H > /H of G/H
is metacyclic. By the classification of metacyclic p-groups [6], a and b can be
chosen in such a way that P has the following presentation:

P = (aH,bH | (aHP""" = H, R = (aH) " b7 abH = o' H, )

where s,u are non-negative integers, r > 1 and u < 7. Since the element a? H
is of order p, we conclude that s + u = 1 and the group P splits [6]. Let
Q@ =< b, H>.Then P =<a,b,Q > /Q has the following presentation:

r+1

A =1 (mod @), =1 (mod @), B lab=d**t" (mod Q).

Let A=<a,b,Q > . Then G/Q = A/Q - L/Q, where L/Q is the centre of
G/Q.

Suppose that the order of some element dQ € L/Q is not less
than the order of a@). Since < aQ,dQ > is abelian, it is well-known that
<aQ,dQ >=<dQ > x < a’Q > and (’Q, bQ) = a? *Q €< dQ > for some
0 <k < p. Thus < d'Q,bQ > is not a metacyclic group, which is impossible
according to our assumption.

We conclude that the element aPQ is of maximal order in L/Q and
thus L /Q is a direct product of the cyclic group < a?@ > /Q and an abelian
p-group W/Q. Then W is a normal subgroup of G and we set H; =< W,Q > .
The subgroup < aHy,bH; > /H, of G/H; is nonabelian with the commutator
subgroup of order p and therefore it coincides with G/H;. According to case
3, V(IF,~ G) has a conjugacy class of order p?™.

Corollary. If H is a normal subgroup a finite p-group G and G/H is ¢
nonabelian group with two generators, then V (Fp» G) has a conjugacy class o
order p*".

Acknowledgement. The authors are grateful to L.G. Kovécs and Cs
Schneider who showed, using GAP, that for nonabelian groups of order pf
there exists a conjugacy class of order p?, for p = 3,5. The form of the element
used by them was useful in the general proof presented in this paper.
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MODULES INJECTIVE WITH RESPECT
TO MAXIMAL IDEALS

Septimiu Crivei

Abstract

Let R be an associative ring with non-zero identity. An R-module
D is called m-injective if any homomorphism from any maximal left
ideal of R to D extends to R. This type of injectivity coincides with
injectivity with respect to the Dickson torsion theory. We establish
some properties for m-cocritical modules over a commutative ring as
well as decomposition theorems for certain m-injective modules which
are m-injective hulls of each of their non-zero submodules.

1 Introduction

Throughout this paper we denote by R an associative ring with non-zero
identity and all modules are left unital A-modules.

Let A be an R-module. Then we denote by Soc(A) the socle of A and
by E(A) the injective hull of A. If 0 # B C A and 0 # I C R, we denote
AnngB ={r € R|rb=0,Vb€ B} and Annal = {a € A|ra=0,Vr e I}.
If 0 # a € A, Anngr{a} is denoted by Annra. A module A is said to be
faithful if AnngA = 0.

A module A is said to be semiartinian if every non-zero homomorphic
image of A contains a simple submodule [11, Chapter I, Definition 11.4.6].

A finite strictly increasing sequence pg C p1 C ... C pp of prime ideals of
a commutative ring R is said to be a chain of length n. The supremum of the
lengths of all chains of prime ideals of R is called the dimension of R and it
is denoted by dim R [11, p.207]. If p is a prime ideal of a commutative ring
R, then dim R/p is called the dimension of p and it is denoted by dimp [7,
p.227].

Key Words: m-injective, m-cocritical, minimal m~injective module.
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2 A short survey on the topic

J.L. Johnson studied in [9] modules injective with respect to primes in a
commutative ring, i.e. modules satisfying a Baer-type criterion only for prime
ideals. We have considered in [3] and [5] the following generalization of
injectivity for modules over a not necessarily commutative ring: in the well
known Baer criterion for injective modules take only the maximal left ideals.
Thus, an R-module D is called m-injective if any homomorphism from any
maximal left ideal of R to D extends to R [3, Definition 1].

The following theorem gives a characterization of m-injective modules in
terms of injectivity with respect to certain exact sequences of modules.

Theorem 2.1. [3, Theorem 3] The following statements are equivalent for a
module D:

(i) D is m-injective.

(ii) D is injective with respect to every short ezact sequence of modules

0—A—B—C-—0,

where C is a semiartinian module.

In order to justify the study of this type of injectivity we make a connection
with torsion theories. Consider the following torsion theory:

Let 7 be the class of all semiartinian R-modules and let F be the class
of all R-modules with zero socle. Then 7p = (7,F) is a hereditary torsion
theory, called the Dickson torsion theory [6]. The corresponding Gabriel filter
F consists of all 7p-dense left ideals I of R, i.e. all left ideals of R for which
R/I is a left semiartinian R-module.

An R-module D is tp-injective if any homomorphism from any left ideal
I € F to D extends to R or equivalently if D is injective with respect to every
short exact sequence of modules 0 — A — B — C — 0, where C is
Tp-torsion.

Theorem 2.1 proves that when checking 7p-injectivity it is enough to
consider only a subset of ideals of the filter F', namely the maximal left ideals.

-By Theorem 2.1, a module is m-injective if and only if it is Tp-injective.
Therefore the goal is the study of modules injective with respect to the Dickson
torsion theory.

We will continue by presenting some cases when the notions of injectivity
and m-injectivity coincide or not. A characterization is given for commutative
noetherian domains.

Proposition 2.2. [3, Corollary 13] Let R be a commutative noetherian domain.
Then every m-injective R-module is injective if and only if dim R < 1.
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Therefore, there exist non-injective m-injective modules. An example is the
following one: if R i a unique factorization domain whose maximal ideals are
not principal, then R is a non-injective m-injective R-module [5, Theorem 15].
For instance, that hypothesis is verified by the ring K[[X1,..., X,]] of formal
power series in n indeterminates over a field K or by the ring K[X,,..., X,] of
polynomials in n indeterminates over an algebraic closed field K, where n > 2
in both cases.

Some classes of rings that have the property that every m-injective module
is injective are the following ones: Dedekind domains, left semiartinian rings
and left 7p-cocritical rings.

From the general context of torsion theories, every module A has an
m-injective hull, denoted by E,,(A), contained in E(A), unique up to an
isomorphism. The structure of the m-injective hull of R/p, where p is a prime
ideal of a commutative ring R, is established if dimp = 1 and E,,(R/p) is a
minimal m-injective module.

Theorem 2.3. [5, Theorem 4.7] Let p be a prime ideal of a commutative ring
R with dimp = 1. Suppose that E,,(R/p) is a minimal m-injective submodule
of E(R/p). Then En(R/p) = Anng(p/pp, there exists an R/p-isomorphism
between E,(R/p) and the field of fractions of R/p and R/p # E,(R/p).

A non-zero m~injective module D is said to be minimal m-injective if D
is an m-injective hull of each of its non-zero submodules [5, p.147]. For a
commutative noetherian ring we are able to give the structure of minimal
m-injective modules.

Theorem 2.4. [5, Corollary 4.6] Let R be a commutative noetherian ring.
Then the following statements are equivalent:

(i) D is a minimal m-injective R-module.

(#i) D = E,.(R/p), where p is o prime ideal of R with dimp < 1.

Note that every minimal m-injective module is uniform. Minimal m-
injective modules play an important part in the decomposition of m-injective
modules. Some decomposition properties could be easily obtained from general
results for torsion theories (see [1], [10]).

For all notions and results concerning torsion theories we refer to [8].

3 Some further results

We begin this section with some properties of certain minimal m-injective mo-
dules. By an m-cocritical module we will understand a Tp-cocritical module,
where 7p is the Dickson torsion theory. Thus, a non-zero module A is said to
be m~cocritical if Soc(4) = 0 and Soc(A/B) # O for every non-zero proper
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submodule B of A. If the R-module R is m-cocritical, it is said that the ring
R is m-cocritical. It is worth of being mentioned that minimal m-injective
modules with zero socle (i.e. torsionfree with respect to the Dickson torsion
theory) are exactly m-injective m-cocritical modules.

Theorem 3.1. Let A be an m-cocritical module over a commutative ring R.
Then:

(i) Annga = AnngA, for every non-zero element a € A.

(i) AnnpA is a prime ideal of R.

(#ii) A is a torsion-free R/AnngA-module.

(tv) A is isomorphic to a submodule of Anng(r/ann,4)(AnnprA).

(v) R/AnngA is m-cocritical.

Proof. m-cocritical modules have the property that every endomorphism of
such a module is a monomorphism. Then the statements (i) — (iv) follow [4,
Theorem 3].

{v). Let a be a non-zero element of A. Then R/AnngA = R/Annga = Ra.
But the class of m~cocritical modules is closed under taking submodules. Since
A is m~cocritical, it follows that R/AnngA is m-cocritical. O

Corollary 3.2. Let A be an m-cocritical module over a commutative ring R.
Denote p = AnngrA and let B be a non-zero submodule of Anngayp. Then
B is m-cocritical.

Proof. Since Soc(A) = 0, it follows Soc(E(A)) = 0, hence Soc(B) = 0. Since 4
is m~-cocritcal, A is uniform. Now let D be a non-zero proper submodule of B.
Then D is essential in B. Let b € B\ D. Since Anngb = p, we have Rb = R/p,
hence by Theorem 3.1, Rbis m-cocritical. We have Rb/(RbND) 22 (Rb+D)/D.
Since RbN D # 0 and Rb is m-cocritical, it follows that Rb/(RbN D) is
semiartinian. Then Soc(Rb/(RbN D)) # 0, hence Soc(B/D) # 0. Therefore
B is m-cocritical. |

Corollary 3.3. Let A be a faithful m-cocritical module over a commutative
ring R. Then:

(i) R is a domain and E(A) = E(R).

(ii) Every non-zero submodule of E(A) is m-cocritical.

(iii) Every non-zero prime ideal of R is a mazimal ideal.

Proof. (i) By Theorem 3.1, AnngA = 0 is a prime ideal of R. Hence R is a
domain. Let a be a non-zero element of A. By Theorem 3.1, Annga = 0, hence
Ra = R is m-cocritical. Since A is uniform, we have E(A) = E(Ra) & E(R).

(i1) and (zi¢) They follow by Corollary 3.2 and [2, Theorem 2.6] respectively.
a
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We continue with several results that generalize the corresponding ones
for indecomposable injective modules. For recall that minimal m-injective
modules have local endomorphism rings ([3], Theorem 3.2). Therefore, we
may state a Krull-Schmidt-Remak-Azumaya-type theorem:

Theorem 3.4. Let A be a module that is a direct sum of minimal m-injective
modules. Then any two direct sum decompositions into indecomposable direct
summands are tsomorphic.

Theorem 3.5. Let A be a module and let B = B1N...NB,, be an irredundant
intersection of submodules of A such that E,,(A/B;) is a minimal m-injective
module for every i € {1,...,n} Then

Em(A/B) = &L, En(A/B;)
and any two such direct sum decompositions are isomorphic.
Proof. Let f: A— @®%,En,(A/B;) be defined by

fla)=(a+ By,...,a+ B,).

Then f is a homomorphism with Ker f = B. Hence f induces a monomorphism
g: A/B = &% E,(A/B;). Foreachi e {1,...,n}, let ¢; : E,(A/B;) —
&%, E,.(A/B;) denote the canonical injection. Since the intersection B =
B, n...N B, is irredundant, for every i there exists b; € By N...NB;_1 N
Bis1N...N B, and b; ¢ B;. Then g(b; + B) = ¢;(b; + B;) is a non-zero
element of g(A/B) N ¢;(A/B;). But E,,(A/B;) is minimal m-injective, hence
¢:;(Em(A/B;)) has the same property. Then ¢;(E,,(A/B;)) is an m-injective
envelope of g(A/B) N ¢;(A/B;). Hence '

i1 Em (A/B;) = @, 6:(Em (A/By)) =
= Em(®iL1(9(A/B) N ai(4/B;))) = En(g(A/B)).
But E,,(¢g(A/B) = E,,(A/B) [5, Lemma 2.2]. It follows that E,(4/B) =
O Em(A/B;).
Now let B = C1N...NC,, be another irredundant intersection of submodules

of A such that E;,(A/Cj;) is a minimal m-injective module for every j €
{1,...,m}. We have the isomorphisms

En(A/B) = &, Em(A/Bi) = @71 Em(A/Cj).

Now by Theorem 3.4, it follows that m = n and there exists a permutation o of
the set {1,...,n} such that E,,(A/B;) = En,(A/C,(;)) foreveryi € {1...,n}.
0
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Remark. In the context of the previous theorem, since E(A/B;) is indecompo-
sable, B; is irreducible for every i € {1,...,n}.

As a consequence of Theorem 3.5, we obtain the following result previously
established in [5, Theorem 4.15].

Corollary 3.6. Let R be o commautative ring with dim R > 1 and let p =
1 N...Np, be an irredundant intersection of prime ideals of R such that
En(R/p:) is a minimal m-injective R-module for every i € {1,...,n}. Then:

(i) Em(R/p) = ®i_; Em(R/pi).

(i) n and p1,...,pn are uniquely determined by p.

Theorem 3.7. Letn be a positive integer, A a module and B a submodule of
A. Then the following statements are equivalent:

(i) En(A/B) = @, E;, where E; is a minimal m-injective module for
every i € {1,...,n}.

(i) There exists an irredundant intersection B = BiN...NB, of submodules
of A such that E,,(A/B;) is a minimal m-injective module for every i €

{1,...,n}.

Proof. (it) = (¢) This is Theorem 3.5.

(1) = (i) Let p: A - A/B and k : A/B — E,,(A/B) be the natural
epimorphism and the inclusion homomorphism respectively. For every i €
{1,...,n}, let ¢; : E,(A/B) — E; be the canonical projection, let g; : A —
E; be the combined homomorphism g; = g;kp and put B; = Kerg;. Then
B = BiN...NB,. Nowlet i € I. Since E;N(A/B) # 0, it follows that B; # A.
We have A/B; = ¢;(A) C E;, hence F,,(A/B;) = E;, because F; is a minimal
m-injective module. Suppose that the intersection B = By N...N By is not
irredundant. Then we can refine from it an irredundant intersection with fewer
terms by omission. By Theorem 3.5, E,,(A/B) is isomorphic to a direct sum
of less than n minimal m-injective modules, which is a contradiction. m|
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G, we have :

f([uivuj] k) - f([uiauk]7uj) + f([ujvuk]’ui) - [u‘i: f(uj)uk)]+
[wj, f (ui, uk)] — [uk, f(ui,u;)] =0

S ([ ug],ve) + f(ug, [us, ve]) — f(ws, [ug,ve]) — [wi, fug,ve) ]+
[uj, f (ui, ve)] = [vt, fui,ug)] =0

Flwi,vel,vr) + f([wi, velve) + F([v, vr] ws) — [us, fvg,0r)]+
[ve, f(ui,vr)] + [vr, f(ui,ve)] =0
f([vtvvr]v'vé?) + f([vt,vé?]vv"‘) + .f([UﬁUS]’vt) - [Ut)f('u‘rvvs)]_

[U‘r‘af(vty Us)] - ['Ua, f('Ut,'Ur)] =0.

We denote by Z2(G,G) the linear space of these cocycles.

1.3 On the variety of Lie superalgebras

Let Cf], ; and Ek be elements of an algebraic closed field K such that

C" = —C’“- and E"’ = Ef.. Let G = Go ® G1 be a superalgebra with
{X1,X2, Xn,Yl,Yg, .. m} as a basis with X; € Gy and Y; € G;. Assume
that : [X;, X;] = Yp_, CF; Xk, [X3,Y)] = Ygoy DF; Y and [V,Y)] =
> ket Em Xx. Then the Jacobl s super-relations can be seen as polynomials
relations, see [5], on the constants of structure C¥, ; and E¥,. Therefore

i ]7
the set of Lie superalgebras is an algebraic variety, we w1ll denote it by Ly, m-

Definition 1.3. Let vy be a Lie superalgebra of £, . A deformation v, in
Lp,m of vy is a formal power series in one parameter ¢ such that vy = vo+tv; +
t2vs + ... where v; are bilinear maps such that v;(ga, gg) = (—1)*Pvi(gs, 9a),
for all i € N, g, € G, and gg € Ggand satisfying Jacobi’s formal-relation :

(—=1)7%u3(A, (B, C)) + (= 1)*P (B, 11 (C, A)) + (=1)P "1 (C, v4(4, B)) =

for all A€ Gy, BeGget Ceg,.

The Jacobi’s formal-relations implies the following proposition :
Proposition 1.1. Let uo be a Lie superalgebra and v, a deformation of vy
such that vy = vp + tvy + t2va + ... Then vy € ZE (o, 1)
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2 Nilpotent Lie superalgebras

2.1 Definitions

For a Lie superalgebra G over an algebraic glosed field of characteristic 0 we
define the lower central series C°(G) = G, C**1(G) =[G, C*(G)].

Definition 2.1. A Lie superalgebra G is nilpotent if there exists an integer n
such that C*(G) = {0}.

This definition is not easy to use. We define for a Lie superalgebra § = Go® G
two sequences :

C%Go) =Go,  C"(Go) = [Go, C¥(Go)]
and
C°G) =G,  C*YGi) = [Go, C (G1)].

It is easy to see that if G is nilpotent, there exists (p,q) such that : C?(Go) =
{0} and C?(G1) = {0}.

Theorem 2.1. Let G = Gy ® G, be a Lie superalgebras. Then G is nilpotent if
and only if there exists (p,q) € N* x N* such that C?(Go) = {0} and C4(G,) =
{0}.

The proof is based on the classical Engel’s theorem.

Definition 2.2. Let G be a nilpotent Lie superalgebra, the super-nilindez of
G is the pair (p,q) € N* x N* such that : CP(Gp) = {0}, CP~(Gy) # {0} and
C9(G1) = {0}, C971(G1) # {0}. It is and invariant up to isomorphism.

3 Filiform Lie superalgebras

3.1 - Adapted basis

Definition 3.1. Let G = Gy®G; be a nilpotent Lie superalgebra with dim Gy =
n+ 1 and dim G, = m. G is called filiform if its super-nilindex is (n,m).

Remark. We can view the set of filiform Lie superalgebras as the complement:e
ry of the closed set, for the Zariski topology, of the nilpotent superalgebas with
super-nilindex (k, p) such that k < n—1 and p < m—1. Hence the set of filiform
Lie superalgebras is an open set of the variety of nilpotent Lie superalgebras.
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Like for the filiform Lie algebras [7], there exists an adapted basis of a filiform
Lie superalgebra, :

Theorem 3.1. Let G = Gy @ Gy be a filiform Lie superalgebre with dim Gy =
n+1 and dim G; = m. Then there exists a basis {Xo, X1,... Xn, Y1, Y2,... Y0
of G with X; € Go and Y; € G, such that :

[X07-X‘i] = X‘i-}-l) 1 <i<n-1, [X07 Xn] = Oa
[Xl,Xz] eCXy+C X5 +---4+C.X,;
[XOan]:}/j+l7 1S]SWL—1, [XO’YTn]:O

Definition 3.2. Let G = Go @G, be a nilpotent Lie superalgebra. Let gzp(X)
and gz;(X) be the ordered sequences of Jordan block’s dimensions of the
nilpotent operator ad(X) restricted to Gy and G;, where X € Go. In the set of
sequences, we consider the lexicographical order. Then the pair :

— X
92(9) (Xegr(fl\%,%] g20(X)

max gz (X) )

X €Go\[Go,5o]

is an invariant up to an isomorphism.

This extends the Goze’s invariant for nilpotent Lie algebras. The following
proposition give a characterization of filiform Lie superalgebras with this
invariant. The proof of this proposition is based on the Theorem 3.1.

Proposition 3.1. Let G = Go®G, be a filiform Lie superalgebra with dim Gy =
n+ 1 and dimG, = m. Then gz(G) = (g20(Xo)|g21(Xo)) = (n|m), where
Xo € Go \ [Go, Go]-

Let’s define the superalgebra L, ,, by
[Xo, Xi] = po(Xo, X;) = X1 1<i<n—1,
[X071/‘i] :PO(XO,Y;') :Y;-}—l 1S7’_<_m_17
the other brackets vanished.

Theorem 3.2. Every filiform Lie superalgebra is isomorphic to a linear defor-
mation of Ly .

Proof. Let G be a filiform Lie superalgebra. The Theorem 3.1 shows that
the product of G can be written as pg + po + ® where ®(X,,e) = 0. As this
product satisfies the Jacobi’s super-relation, we have a linear deformation of
Lom. O
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Using Theorem 3.2 and Proposition 1.1, the study of the set of filiform Lie
superalgebras g + po + @ can be reduced to the study of the even 2-cocycles
® € Z&(LnmsLnm)-

3.2 Description of ZZ(Lym, Ln,m)

Proposition 3.2. Let the Lie superalgebra Ly ,m = Go & Gy be filiform. Any
even 2-cocycle & € ZE(Lyp my Ln,m) 8 a sum of three cocycles

U,p,b € ZE(LnmsLnm), @ = T+ p+b such that v € Hom(Go A Go,Go),
0 € Hom(Go ® G1,G1) and b € Hom(Gy V Gy, Go).

This belps us to compute a basis for these cocycles. Hence, the structure of
filiform Lie superalgebras is well known. We can precise the expression of the
cocycle b. For that we introduce the symmetric mapping fp 4, for1 < s <n
and 1 < p <m—1, by putting :

Fp,el¥Y3,Ys) = X, if i = p, otherwise 0.
Assume that, for 1 < 4,7 <m — 1:
[XO,fp,s(Yiij)] f;as( z—l»l,Y)"‘fps(Ysz]+l)

Then we have, if 1 <1 <p<j<m,
(_1)13— p—1 p—i—1
Jos (Ve ¥3) = S—— (CPLI+ €701 ) Komapring.

To simplify the notations, we define the mappings : fn,m(Yim, Ym) = X, and
fam(Yi,Y;) =0 i#£morj#m,and f;,, =0, for 1 <i<n.

Theorem 3.3. For a 2-cocycle b € Hom(G1 V G1,Go) in Z&(Lnmy Ln,m), we

have
m n
b= 2 z Qp,s fp,87

p=1 s=1

where the coefficients ap s sotisfy the linear relations given by :

AO; (iza m)]—b( 1+17 )fO?"l SZSm_l

Remark. Here b is not decomposed in cocycles. But this result permits to
have informations on the dimension of ZZ(Ly, m, Ln.m) and to get classification
in Jower dimensions.
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4

Classifications of filiforms over C in lower dimensions

Using the basis of the cocycles and adapted changes of basis, like it was done
for Lie algebras in [4], we have classifications of filiform Lie superalgebras.

The next table gives us for the dimensions of Gy and G; the number of
nonisomorphic filiform Lie algebras and Lie superalgebras. The descriptions
of these superalgebras can be found in [2].

[dimGy [ dim G, | Lie algebras | Lie superalgebras |

2 2 1 3 |
2 3 1 6
2 4 1 9
3 2 1 5 ]
3 3 1 16
4 2 1 6
5 2 2 11
6 2 5 35
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ON THE NUMBER OF NONEQUIVALENT
INDECOMPOSABLE MATRIX
REPRESENTATIONS OF THE GIVEN
DEGREE OF A FINITE p-GROUP OVER
COMMUTATIVE LOCAL RING OF
CHARACTERISTIC p?

P.M. Gudivok and I.B. Chukhraj

Abstract
It is settled that the number of nonequivalent indecomposable matrix
representations of an arbitrary degree of a finite p-group G of order
|G| > 2 over a commutative local ring K of characteristic p° (s > 0)
is infinite, if RadK # 0 and K/RadK is an infinite field (RadK is the
Jacobson radical of the ring K).

Higman (1] has cleared up when the number of nonequivalent indecomposable
matrix representations of a finite group over a field of characteristic p > 0 is
finite. The analogous problem for matrix representations of finite groups over
residue class ring modulo p?® (s > 0) was solved in [2]. The known problem on
finiteness of the set of degrees of all indecomposable matrix representations of a
finite p-group over an arbitrary commutative local ring of characteristic p® has
been solved in [3-4]. Roggenkamp [5] has proved that if a noetherian domain
R of characteristic p > 0 is not a field and p divides the order |G| of a finite
group G then there exists infinite number of nonisomorphic indecomposable
RG-lattices of a finite R-rank less then |G| + 1 (RG is the group ring of a
group G over the ring R). It is shown in [6] that the number of nonequivalent
indecomposable matrix representations of an arbitrary degree n > 1 of a
finite p-group (p # 2) over an infinite field of characteristic p is infinite. The
similar statement have been proved in [7] for matrix representations of a finite
noncyclic p-group (p # 2) over a commutative local ring K of characteristic p*
(s > 0) when K is an infinite ring of characteristic p or K/RadK is an infinite
field (RadK is the Jacobson radical of the ring K).
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In this paper we are investigating when a finite p-group has infinite number
of nonequivalent indecomposable matrix representations of an arbitrary degree
n > 1 over commutative local rings of characteristic p°.

Lemma 1 [8]. Let K be a commutative local ring, and G be o finite
group, and I : g = I'y be a matriz K -representation of degree n of the group G
(9€G, Ty e GL(n,K)), and W(') ={C € M(n,K) |CL, =T,C, g¢geC},
where M (n, K) is the set of all n x n—matrices over the ring K. If W(I') is a
local ring, then T' is an indecomposable matriz K -representation of the group

G.

Lemma 2. Let H = (a) be a cyclic p-group of order p, and K be a
commutative local ring of characteristic p* (s > 0) which contains a nonzero
nilpotent element. If the factor ring K/RadK is an infinile field, then the
number of nonequivalent indecomposable matriz K -representations of an arbi-
trary degree n > 1 of the group H is infinite.

Proof. Let E, be the identity n x n—matrix, I,(A) be the Jordan n x
n—matrix with element A at the principal diagonal (A € K'), and ¢ be a nonzero
nilpotent element of the ring K (" = 0, t"~! # 0). Suppose that { = pif s > 1.
Using the Lemma 1, it is easy to show that the map

LA : a— E, +t" 1L ()

is an indecomposable matrix representation of the group H = (a) over the ring
K. Obviously the representations I'(A;) and T'(A2) are nonequivalent over the
ring K for A\; # Ao(mod RadK) (\; € K: i =1,2). The lemma is proved.

Lemma 3. Let H = (a) be a cyclic p-group of order |H| > 2, and K be
a commutative local ring of characteristic p which is not integral domain, and
K /RadK be an infinite field. Then the number of nonequivalent indecomposable
matriz K -representations of an arbitrary degree n > 1 of the group H is
infinite. ' o

Proof. Using the Lemma 2, it is enough to consider the case if the ring K
has not nonzero nilpotent elements. Then in the ring X there exist elements

u and v such that uv =0, u € Kv, v € Ku.
Let n be even, that is, n = 2m. It is easy to see that the map

' B, uE,+vl,(\)
I‘l(/\) 14— < 0 Em )

is a matrix K-representation of the group H = (a). Denote D,,(\) = uFy, +
vl (). Let us show that the representations I'y (A1) and I'; (A2) are

=A(A) (A€ K) (1)



ON THE NUMBER OF NONEQUIVALENT INDECOMPOSABLE MATRIX REPRESENTATIONS 29

nonequivalent over the ring K for A; #Z A2 (mod RadK). Assume the represen-
tations 'y (A1) and I'; (A2) are K-equivalent. Then there exists an invertible
matrix C over the ring K such that

AN)C = CAQR). (2)

We shall represent the matrix C as
_{ C Cy

c=(& &) ®
where C; is an mxm—matrix (¢ = 1, 2,3,4). Then by (1)-(3), we have obtained
that

D, (M)C3 =0, Dp(A)Cq = C1 D, (Ng).
From here it follows that
C3 =0 (mod RadK), C; = C4 (mod RadK),
(4)
Im(Al)Cl = lem()\z) (mod RadK)

Therefore the matrix C is a noninvertible matrix over the ring K. This
contradiction proves the nonequivalence of the K-representations I'; (A1) and
I'; (A2) for A1 Z Az(mod RadK).

Next we shall establish that Iy (A) is an indecomposable K-representation
of the group H. If we put in (2) A\; = A, = A, then, using (1)-(4), we receive

o *
C= . (mod RadK), (5)
0 a

where a € K. That is, C or Ey,, — C is an invertible matrix over the ring K.
Then by the Lemma 1, we get that I'; () is indecomposable representation of
the group H over the ring K. The group H = (a) has an infinite number of
nonequivalent indecomposable K-representations of the degree n = 2m.

Next we consider the case when n = 2m + 1 (m > 1). We denote by (1)
the m X l-matrix:

1 | =BM) (6)
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is a matrix K-representation of the group H of order |H| > 2. Let us see that
the representations I'a(A;) and T'y(A2) are nonequivalent over the ring K for
A1 Z A2 (mod RadK) ()\; € K; i = 1,2). Suppose that the representations
Iy(A1) and Ta(Ag) are K -equwalent Then there exists an invertible nxn— matrlx
C' over the ring K such that

BT = C'B(Ay). )
Denote
Cu Ciz Cis
= Cu Cup Cy |,
Cs1 Csp Cas

where C1; and Cag are m x m—matrices. Then from (6)-(7) we obtain that
(1)C3, =0, (1)Cas = Cn1Dr(A2), Dn(A)Cnr =0,
D (A1)Caz2 = C11 D (A2), (1)Cs3 = Caa(1).

From here it follows that

C31 =C3 =0 (mod RadK), Co =0 (mod Ra,dK),

&
Cu = 022 (mod RadK), Clllm(/\g) = Im(A1)011 (mod RAdK)

That is, C' i3 a noninvertible matrix over the ring K. This contradiction
proves that the representations I';(\;) and I';(\2) are nonequivalent for A\; #
A2 (mod RadK). Next we prove that I'2(}) is an indecomposable
K-representation of the group H. If we put in (7) Ay = A2 = A, then, using
(7)-(8), we obtain that the matrix C' looks like (5). From here and from
the Lemma 1, it follows that I'z(A) is indecomposable K-representation of the
group H. The lemma is proved.

' Lemma 4. Let H = (a) be a cyclic p-group of order |H| > 2, and K
be a local integral domain of characteristic p, RadK # 0, and K/RadK be
an infinite field. Then the number of nonequivalent indecomposable matriz
K -representations of an arbitrary degree n > 1 of the group H 1s infinite.

Proof. We consider four cases. "
1) Let n = 2. It is easy to see that the K-representation

A : a—>((1) i) (A e K)

of the group H for A # 0is indecomposable. It is obvious that the representations
A(A;) and A()g) are not equivalent over the ring K for A\; Z A2 (mod RadK).
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2) Let n = 3m. It is easy to check that the map

E, tEn I.(\)
T\ : a— ( 0 E, tE, ) =D(\) (t € RadK, t#£0, A€ K) (9)
0 0 E,

is a matrix representation of the group H = (a) over the ring K. We show
that, for Ay Z A2 (mod RadK), the representations I'(A;) and T'(A\;) are
nonequivalent over the ring K. Let us assume that the representations I'(A;)
and I'()\;) are K-equivalent. Then there exists an invertible matrix over the
ring K such that

D(A\)C = CD (). (10)

We shall represent the matrix C as

Cii Cia Cis
C=| Cn Cp Cu |,
Cs1 Cay Ca3

where Cy; (i = 1,2, 3) are m x m—matrices. Then, by (9)-(10), we obtain

Cs1 =0, C32 =0, Cy1 =0, C11 = Cop = Cis,
(11)
Im(/\l)Cll = CuIm(/\Q) (mod RadK)

From here it follows that C is a noninvertible matrix over the ring K. So
we obtain a contradiction, that is, the representations I'(A;) and T'(\;) are
nonequivalent over the ring K for A; # Ay (mod RadK).

Clearly if we shall put in (10) Ay = Ay = A, then using (11), the matrix
C will look like (5). From here and from the Lemma 1 we obtain that
I'(A\) is an indecomposable representation of the group H over the ring K.
Hence, the group H of order |H| > 2 has an infinite number of nonequivalent
indecomposable matrix K-representations of degree n = 3m.

3) Let n=3m +1 (m > 1). It is easy to check that the map

E, tE, IL.,(\) t(1)
0 En. tE, 0
0 0 E, 0
0 0 0 1

Ti(A): a— = S(A) '(12)

is a matrix K-representation of the group H = (a) (t € RadK,t#0, A € K).
We shall prove that, for A; # A2 (mod RadK), the representations I'; (A1)
and I'; (\9) are nonequivalent over the ring K. Suppose that the representations
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T1(A) and T';(A2) are K-equivalent. Then there exists an invertible
n X n—matrix C over the ring K such that

S(A\)C = CS(\a). (13)

Obviously

Ciy Ciy Ciz Cyy

C21 022 023 024

Cs1 Cip Czz Ca |°
Cy Cag Cyz Cuyg

C =

where Cj; (i = 1, 2,3) are m X m—matrices. From (12) and (13) it follows that

021 = 0, 031 == 0, 032 = 0, 041 = 0, 042 - 0, 034 = 0, (14)
011 = 022 = 033, 011(1> = (1)044 (mod Ra,dK), (15)
Ciiln(M) = In(A2)Chi (mod RadK). (16)

Hence, C is a noninvertible matrix over the ring K. We have obtained a
contradiction, that is, the representations I') (A1) and I'; (A2) are nonequivalent
over the ring K for A\; # Z Ay (mod RadK). If we shall put in (13) Ay = Ay =
A, then, using (14)-(16), we shall receive that C44 = @ (mod RadK) and the
matrix C1; will looks like (5) (o € K). From here and from the Lemma, 1
it follows that I';(\) is an indecomposable K -representation of the group H.
Hence, the group H has an infinite number of nonequivalent indecomposable
K-representations of degree n = 3m + 1.

4) Let n =3m + 2 (m > 1). It is easy to show that the map

E, tE, IL,(\) t%(1) 1)

0 E, tE, 0 Q1)

Ts(A): e=>{ 0 0 E, 0 0 =T @7
0 0 0 1 1
0 0 0 0 1

is a matrix K-representation of the group H = {a) (t € RadK, t #0, A € K).
We shall prove that, for Ay # Ay (mod RadK), the representations I'y(\;)
and Ty()\2) are nonequivalent over the ring K. Let us assume that the
representations I'a(\;) and I'z(Ag) are K-equivalent, hence there exists an
invertible n x n—matrix C over the ring K such that

T(M)C = CT(Az). (18)
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Clearly
Cu Ci2 Ciz Ciy Cis
Co1 C2z Coz (o Cys
C=| Cs1 Cs Caz Cz Ca |,
Cua Csg Ciz Cyq Cius
Cs1 Cs2 Csz Csq Css

where Cj; (1=1,2,3) are m x m—matrices and Cj; (7 = 4, 5) are 1 x 1 —matrices.
By (17)-(18), we obtain

Co1 =0, Cs1=0,Cy =0, Cs51 =0, C32=0, Cs52=0,C54 =0, C34 =0,

(19)
Co4 = 0 (mod RadK), Cs3 = 0 (mod RadK), C1; = Css = Cs3 (mod RadK),
(20)
C44 = 055 (IIlOd R,a.dK), Cn(l) = (1)044 (mod RadK),
(21)

Cllfm(/\l) = Im(/\g)Cn (mod RadK)

Hence, C is a noninvertible matrix over K. We have obtained a contradiction,
therefore the representations I'a(A1), T'z(A2) are nonequivalent over the ring
K for A1 # A2 (mod RadK). Putting A; = A2 = A in (18), we receive, from
(18)-(21), that Cy4 = a (mod RadK) (o € K) and the matrix C1; looks like
(56). That is, the matrix C or E, —C is invertible over the ring K. Then, from
the Lemma 1, we obtain that I';(\) is an indecomposable K-representation of
the group H. Hence, the group H of order |H| > 2 has an infinite number
nonequivalent indecomposable K-representations of degree n = 3m + 2. The
lemma, is proved.

Lemma 5. Let H be an Abelian group of the type (2,2), and K be a
commutative local ring of characteristic 2 without nonzero nilpotent elements
which is not a field. Then the number of nonequivalent indecomposable K -
representations of an arbitrary degree n > 1 of the group H is infinite.

Proof. H is an Abelian group of the type (2, 2), that is,
H=<a>x<b> (a®>=bt*=1, ab=ba).

We consider n even, that is, n = 2m. It is easy to check that the map
o Em #En \ En I.(1)\  _ .
T;: a—)( 0 E,, )—Ai, b—)( 0 E,, =B (ZEN) (22)

is a matrix representation of the group H over the ring K (¢ € RadK, t #
0). Now we shall show that, for i # j, the representations I'; and I'; are
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nonequivalent over the ring K. Suppose that the representation I'; and I'; are
K-equivalent. Then there exists an invertible matrix C over the ring K such
that

A;C = CA;y, (23)

BC =CB. (24)

_{ C1 Oy
(G a)
where C; is an m X m—matrix (¢ = 1,2,3,4). Then, by (22)-(24), we obtain
that

Obviously,

Cs =0 (mod RadK), Ci ¢ =t'Cy. (25)

From here it follows that C is a noninvertible matrix over the ring K. This
contradiction proves that the representations I'; and I'; are nonequivalent
over the ring K, for i # j. We have proved that I'; is an indecomposable K-
representation of the group H. If we shall put ¢ = j in (22), then, by (24)2(25),
we obtain

I,(1)C, = C11,(1) (mod RadK).

Hence, the matrix C; will looks like (5). That is, the matrix C or Ey,,, — C is
invertible over the ring K. Then, from the Lemma 1, we have obtained that I';
is an indecomposable representation of the group H over the ring K. Therefore
the group H has an infinite number of nonequivalent indecomposable K-
representations of degree n = 2m.

Now let n = 2m+1 (m > 1). Let us consider the following K-representation
of H:

E, tE, 0 B, In(1) t41)
':ams| 0 En 0 |=4,b5| 0 E, 0 =B/ (i €N).
0 0 1 0 0 1

(26)
We shall check that for i 7# j the representations I'; and I'; are nonequivalent
over the ring K. Let us assume that the representations I'; and I'; are K-
equivalent. Then there exists an invertible matrix C' over the ring K such
that

ALC = C' A, (27)
B;C' = C'B;. (28)
We represent matrix C’ as
Cn Ciz Cis

C'=| Cua Ca Cy |,
C3 Csz2 Css
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where Cy; and Co, are m x m matrices. By (26) and (27), we obtain

Coy =0 (mod RadK), C51=0 (mod RadK), (29)
023 =0 (mod RadK), (30)
tiCQQ = tjC'u. (31)

From here it follows that, if ¢ # j, then C’ is noninvertible matrix over the
ring K. The given contradiction proves that for ¢ # j the representations I';
and I'; are nonequivalent over the ring K.

Finally, we shall prove that I'} is an indecomposable K-representation of
the group H. If in (28) we shall put ¢ = 7, then we obtain

CirIn(1) = Iy (1)Cag + (1) Cas, (32)

t'C11(1) = L, (1)Cas + t1{1)Css. (33)

For 1 = j, from the equations (27), (29)-(31), we get that
Cn Ciz Cis '
C'= 0 011 0 (mod RadK) (34)
0 Cs Css

Then from (33), it follows that
011(1) = (1)033 (mod RadK) (35)

Using (32)-(35), we obtain that C33 = o (mod RadK) and the matrix Cy
looks like (5). Hence, C' or Egpmy1 — C' is an invertible matrix over the ring
K. That is, by the Lemma 1, I'} is an indecomposable representation of the
group H over the ring K.

Thus, we have shown that there exists an infinite number of nonequivalent
indecomposable matrix K -representations of degree n = 2m + 1 of the group
H. This completes the proof of the lemma.

Theorem 1. Let G be a finite p-group of order |G| > 2, and K be a
commutative local ing of characteristic p® (s > 1), RadK # 0 and K/RadK
be an infinite field. Then the number of nonequivalent indecomposable matriz
K -representations of an arbitrary degree n > 1 of the group G is infinite.

The proof of the theorem follows from the Lemmas 2-5.
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ON THE TRADITIONAL WAY OF
DESCRIPTION OF THE PRIME VARIETIES
IN CHARACTERISTIC P

Alexander Kemer, Tatiana Antipova and Alexander Antipov

Abstract
In [2] the multilinear components of the prime varieties of the matrix
type 2 were classified in terms of the multilinear generators, but the
generators were not calculated. In this paper we calculate with the help
of PC the generators of one of these multilinear components. The result
shows that the problem of description of the prime varieties in terms of
generators is quite wild.

1. Prime Varieties.

In this section we recall some results about the prime varieties in the case
of characteristic p. _

Let X be a countable set, R(X), R{X) are the free associative algebra and
the free associative algebra with trace, respectively, generated by the set X
over an associative and commutative ring B. We assume that

X C R(X) C R(X).

We recall that an arbitrary ideal I' of the algebra R{X) is called a T'- ideal
if the ideal I is an ideal of identities of some R-algebra. Similarly an ideal T of
the algebra R(X) is called a T'-ideal if the ideal I" is an ideal of trace identities
of some algebra with trace.

A T-ideal T of the algebra R{X) is called werbally prime if for every T-
ideals I';, 'z, the inclusion I';T's C T" implies one of the inclusions I'y C T or
Ts CT. A T-ideal T is called verbally semiprime if there are no non-trivial
nilpotent modulo I' T-ideals. A variety of algebras is called prime (semiprime)
if the ideal of identities of this variety is verbally prime (semiprime). In the
same manner we define the prime and semiprime varieties of the algebras with
trace.
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In the case of the algebras over a field of characteristic zero the prime
varieties were described in [1]. The following structure theorem is valid.

Theorem. [1].Let R be a field of characteristic zero.
1. For every non-zero T-ideal T of the algebra F(X) there exists a nilpotent
modulo T' verbally semiprime T-ideal containing T.
2. A T-ideal T is verbally semiprime if I' is the intersection of a finite number
of verbally prime T-ideals.
3. A variety is prime if it i3 generated by the matriz superalgebra M, , or by
the algebra M, (G), where G 1s the Grassmann algebra of infinite rank.

The problem of classification of the prime varieties in the case of the
algebras over a field of characteristic p is open. At first we remark that this
problem scarcely can be solved in full sense because the Finite Bases Problem
has a negative solution. Perhaps it can be solved at the multilinear level.

In this section we talk about some results concerning the multilinear compo-~
nents of the prime varieties.

In [3] the prime varieties were divided into two classes: classical and non-
classical. We recall the definitions.

Let P, be the set of all multilinear polynomials with trace of degree n
depending on the variables 2, --,z,. It follows from the definition of the
free algebra with trace that any polynomial f € P, can be written in a unique
way as an R-linear combination of the monomials

uo(Tr(1)) Tr(ur) - Tr(un), u; € (X), n,01>0,

which belong to ]3" and satisfy the properties:

1. u; # 1 forevery i >0

2. For all i > 0 the least number j, such that z; occurs in u;4., is greater
than the least number k, such that z; occurs in u;. _

Denote by K the R-subalgebra with unity of the algebra R(X) generated
by the element Tr(1). Let KSnii be the group algebra (over K) of the
symmetric group of permutations S,y acting on the set {0,1,---,n} . We
define a K-linear mapping A, : P, K Sn+1, by putting

Anl@iy i, Tr(zy, - - 25,)Tr(@r, - Thy) -+ +) = 0 € Spya,
where ¢ is the permutation whose decomposition into the cycles is the following
o = (O’ily" ',ig)(jl,‘ t 7jt)(k17' ot 1k1) ttT.

The symbol O plays a role of label, which indicates the non-trace part of the
monomial. It follows from the definition of the free algebra with trace that
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the mapping A, is an isomorphism of K-modules. Put

Xo=A0 ) (-1)%.

0ESni1

This polynomial is said to be the Cayley-Hamilton polynomial of degree n. Put
also

Take an arbitrary v € R. We call a T-ideal T v-classical if

1. Tr(1) —y €T

2. For every n, the set A, (f ﬂﬁn) is a two-sided ideal of the group algebra

Ksn+1 -
A variety V of the algebras with trace is called «y-classical if the ideal of trace
identities of V is y-classical. A variety of ordinary algebras is called «y-classical
if it is generated by some algebra with trace which generates a ~y-clagsical
variety of the algebras with trace.

In the case of the algebras over a field of characteristic zero the variety
generated by the superalgebra Mp is (n — k)-classical [7]. The variety
generated by the matrix algebra over the Grassmann algebra is non-classical.
We mention two conjectures about the non-classical prime varieties.

Yu. P. Razmyslov [7] has formulated the conjecture about the identities of
the algebras M,(G).

Conjecture 1. If R is o field of characteristic zero then

T[M(G)] = (T[Mp,a] + {Tr(@)}T) N F(X),

where {g}7 is the T-ideal generated by g, in R(X).

The following conjecture about the multilinear components of the non-
classical prime varieties in arbitrary characteristic generalizes the Conjecture
1 and also looks quite probable.

Conjecture 2. If V is a non-classical prime variety then

PATV] = P (T[V) + {Tr(2)}7)

for some 0-classical prime variety V.

The traditional natural way of description of the multilinear components of
the y-classical varieties is the following. Let F be a y-classical T-ideal. At first
we choose some non-zero polynomial f; € T' of minimal degree and generate
by this polynomial a ~y-classical T-ideal T';. Then (if it is possible) we choose
a polynomial of minimal degree f» belonging to the set

L\,
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and generate by f; and fs a y-classical T-ideal T etc. Obviously we can
assume that the polynomials f; satisfy the additional properties: 1. f; €
P for some n;; 2. The left and right RS, 41 —modules generated by the
polynomlal fi are irreducible modulo RS, +1 —bimodule N; = P ﬂI‘, 1 (I‘O
0). Put

M; = (FSni+1fi + NZ)/NZ

The modules M; satisfy the following property
Theorem. [3]. The RS, 1-module M; is irreducible as a RS,,-module.

It is well-known that if R is a field of characteristic zero then an RS, 41~
module M is irreducible as an RS, -module if and only if M corresponds to
the rectangular Young diagram. In the case of characteristic p the description
of such modules was obtained by A. Kleshchev [5].

Theorem. [5]. Let R be a field of characteristic p. An RS,.1 - module
M s irreducible as RSy, - module if and only if M corresponds to a p-regular
partition X = (lg‘“), ... ,l,(c‘“‘)) satisfying the property: For every j < k and for
every © < j, the numbers

J
B(i,j)=lLi—1;+ Y ax

k=i

are divisible by p.

We see that the multilinear generators of the multilinear components of the
classical varieties satisfy a nice module property. Of course this information is
not enough for describing them. Moreover further we’ll see that the problem
of the calculation of these generators looks wild. At least this problem is very
difficult.

2. Prime subvarieties of the variety generated by the matrix
algebra of order 2.

In [4] one of the authors of this paper, following the traditional natural
way described above, has classified the multilinear components of the prime
subvarieties of the variety Var M, (F) generated by the matrix algebra of order
2 over a field F of characteristic p > 0. To formulate the classification theorem
we need the following lemma.
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Lemma 1. Ifp# 2 or k # 1 then there exists a uniquely defined modulo
the ideal of trace identities of the algebra Mo (F) polynomial fi, € P,, where
n = p* — 2, such that:

1. The algebra Ms(F) does not satisfy trace identity fr, = 0, but satisfies the
identities o fr, = fro = f for every ¢ € Sp41.-
2. The sum of the coefficients of fx is equal to 1.

Denote by Ty the T-ideal of the algebra F (X} generated by the polynomial
f, the Cayley - Hamilton polynomial X, and Tr(1) — 2. Let V be the variety
(of ordinary algebras) corresponding to the T-ideal

[y = F(X)NT4.

We call a subvariety V of VarMy(F) trivial, if either V is a subvariety of the
variety of commutative algebras or the multilinear components of the varieties
V and VarM,(F) are equal. Now we can state the theorem which classifies
the multilinear components of the prime subvarieties of the variety Var My (F).

Theorem. [4]. 1. IfV is a non-trivial prime subvariety of VarMy(F') then
for some k the multilinear component of the varieties V and Vi are equal.
2. For every k, there exists a prime subvariety V whose multilinear component
equals the multilinear component of V.
3. If k < s, then the multilinear component of V, is a proper subset of the
multilinear component of Vy.

It is easy to calculate the polynomial f; in every characteristic:
fl - —X;_—Z'

The prime variety V) is well-known and was found by Yu. P. Razmyslov [6].

The relatively free algebra of countable rank of this variety is very interesting.

This algebra satisfies Engel identity of degree p — 1 but is not Lie nilpotent.
It is quite easy to calculate the polynomial fo for p = 2.

fo=zi0z9 + Tr(z)Tr(zs).

The relatively free algebra of countable rank satisfying identities f, = 0 and
Tr(1) =0 is also interesting and can be considered as the Grassmann algebra
in characteristic 2.

3 Calculation of the polynomials f.

In this section we give the algorithm for the calculation of the polynomials

s
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Let Z(X), Q(X) be the free algebras with trace over the ring of integers
Z and over the field of the rational numbers @, respectively and let F be a
field of characteristic p. Denote by ¢ the natural homomorphism

¢: Z(X) = F(X).
At first we prove

Lemma 2. Let n=p* —2, and | be a ma:mmal number with property: p
divides (n + 1)L. Then:
(1) There ezists o uniquely defined modulo the ideal of trace identities of the
algebra M (Q) polynomial u, € Z(X) such that the algebra Mo(Q) satisfies
the trace identity X&' = pluy,.
(i) fr = d(ug)-

Proof. Indeed let s be the maximal non-negative integer with property:
the algebra M»(Q)) satisfies the trace identity

X?f =p°v, (1)

for some multilinear polynomial v € Z(X). Prove that s = [. Let

§ 0y 0.

0E€ESn 41

Take an arbitrary partition A = (A, Ag) of the set {0,1,...,n},]A2] = m,
and 7 € Sp41. Let Sy be the Young subgroup corresponding to the partition
A. By the Lemma from [2], we have the equalities in @

(n+ 1)1
pPCliy

Z o, =p *min+1-m)l =

OETSA

Hence, if s < I, then
Z @, = 0 modulo p
TETSA

for every A and 7, since C77%; = (—1)™ modulo p. It means, by Lemma in
[2], that the algebra Mo (F') satisfies the trace identity ¢(v) = 0. Therefore,
by the Theorem from the paper (2], the polynomial ¢(v) can be written in the
algebra F (X) as a linear combination (with the coeflicients from the simple
subfield) of the polynomials of the form (T'r(1) — 2)w,

w1 X (ws, w3)wy and wy Tr(Xo(ws, ws)ws), where the w’s are the trace monomials.

It follows from this that v = pu; + g, where v; is a multilinear polynomial with
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integer coeflicients and the polynomial g belongs to the ideal of trace identities
of the algebra M2(Q). Using the last equality, the identity (1) can be written
in the form X = p*t1y;. This contradicts the maximality of s.

The identity (1)(s = I, v = uy,) implies that the sum of the coeflicients of the
polynomial uy, is equal to 1 modulo p. Hence, in particular, the algebra My (F)
does not satisfy the identity ¢(uz) = 0. Let 0 € S,.1;. Since the ideal of trace
identities of the algebra M>(Q) is 2-classical and ¢ X7 = X0 = XF, then,
by (1), the algebra My (F) satisfies the identities o@lug) = d(ur)o = d(ug).
It means ¢(ur) = fr and the Lemma 2 is proved.

By Lemma 2, it is sufficient to calculate the polynomials ug. We consider
a more general problem. Let h = h(z1,...2,) € Z{X) be a multilinear trace
polynomial such that the algebra M,,(Q) does not satisfy the trace identity
h = 0. Since the algebra M,,(F) is finitely dimensional then there exist the
non-negative integer I and the uniquely defined, modulo the ideal of the trace
identities of the algebra M,,(Q), polynomial u € Z(X) such that the algebra
M. (Q) satisfies the identity
h = plu, (2)

but the algebra M,,(F) does not satisfy the identity ¢(u) = 0. We give the
algorithm for the calculation of the polynomial w.
This algorithm can be extracted from the proof of the Theorem 1 [2]. Let
g€ep,
M= 3 e,

0ESn 41

where v, € Z.

We order the set 5,11 , putting ¢ > 7 if and only if there exists a number
t > 0 such that (i) = 7(¢) for 1 < t and o(¢) > 7(t). The permutation
g € Spi1 is called m-decomposable if the series ¢(0),---,0(n) contains the
descending subseries of length m + 1.

Assume that v, # 0 for some m—decomposable permutation o. Let 7 €
Spi1 be a maximal m-decomposable permutation such that v, # 0. Then
o(iy) > ... > 0(imy1) for some 3y < ... < ipyy. Denote by S the subgroup
of the group Sp+1 consisting of all permutations ¢ such that o(j) = j for all

J¢ {t1,. - imy1}

Consider the element

d= (Z(—l)aa*r).

cES

By what is proved in [6], the variety VarM,,(Q) is m-classical and every trace
identity of the algebra M,,(Q) follows from the Cayley - Hamilton identity
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Xm = 0. It follows from this that A !(d) = 0 is an identity of the algebra
M.(Q) since the group S is isomorphic to the group Spy.y1. Modulo the two-
sided ideal generated by d, the permutation T can be written as a Z-linear
combination of the permutations which are less than 7.

Applying the described procedure to the polynomial h, we can find the
polynomial w such that the algebra M., (Q) satisfies the identity h = w and the
element A,(w) is a Z-linear combination of m-indecomposable permutations.

Lemma 3.The algebra M,,(Q) satisfies the identity w = p'u.

Proof. Applying the described algorithm to the polynomial u, we can
assume that the element A, (u) is a Z-linear combination of m-indecomposable
permutations. Then, by [2], w = p'u.

4. The polynomial f; for p = 2.

Applying the algorithm described in the previous section, we have calcﬁlated,
with a help of PC, the polynomial fs for p = 2:

f3(z, v, 2, t,u,v) = zytvzu + cyuvtz + syuzvt + cyvutz + zyziuv+

+zyztvu + zyzvut + styuvz 4+ styvuz + ztuvzy + rtvzuy + zuvizy+
+avutzy + zzvuyt + ytuvzz + ylvzzu + yuxtvz + yuzzot + yuvizz+
+yuzvte + yvitzuz + yvutrz + yztuve + yetvux + youtes + tzuyvz+
+iyuver + tuvzyx + tvzzuy + tvzuyc + wvizyr + uzevty + uzvtyz+
+ovutzyz + zatuvy + zxtvuy + zrvuly + ztuvyz + ztvuyz + zuztvy+
+zuvytc + zvyuxt + zvtzuy + zvuytz + zzutyTrv + clyuzTro+
+ytuzeTrv + zuyteTrv + zytzTruv + zyuzlriv + syzulrtv+
+zuzyTriv + zzotTryu + yuztTrzv + yuzzTriv + yvuzTrat+
+yzuzTriv + teuyTrzv + tvzeTryu + uzyzTrtv + zouyTriv+
+ztyxTruv + zuyzTriv + zuvyTrat + zyztTrulrv+
+xztyTrulry + ztzyTrulrv + yzteTrulrv + ytzaTruTrv+
+tzyzTruTrv + zytTrzuv + cytTrzvu + zyzTriuv+
+xtyTrzvu + zuzlryvt + czuTrytv + yteTrzuv + tycTrzuv+
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+iyzTrzvu + uzzTryvt + zyzTrivu + zuxTrytv + zytTreul ro+
+zyzTriuTrv + zyzTruvlrt + stylrzuTre + ytaTrzuTro+
+yuzlretlTry + tyxTrzulre + eyeTrivlry + zyzTruvTri+
+zuyTraztTrv + zyzTriTrulrv + zyzTrtTruT ro+
+zyTrztuv + zzTrytuv + zzTrytvu + zzTryvut + yzTrzout+
+ytTrzzuv + ytTrzzov + tyTrouvz + tyTrevue + zeTrytuv+
+zaxTryuvt + zaTryvut + syl rivuTrz + zzTrytuTrv+
+yzTrtueTrz + ytTrzzulrv + zeTryutTrv + tyTrezuzTro+
+zyTrztTruv + stTryulrzv + yzTrztTruv + teTryuTrzv+
+zyTruvTrzTrt + yeTruvTrzTrt + zyTrzTrtTruT ro+
+yxTrzTrilTrulrv + zTrytuvz + 2T ryzvut + yTrrtuvz+
+yTratvzu + yTrzuviz + yTrauzvt + yTrovutz + yTrzztuv+
+yTrzztvu + yTrzzvut + 2T ratoyyu + 2T reuyvt + 2TrztuvTry+
+zTrzvutTry + zTryuzl'rtv + cTryzulrtv + zTriuvvTryz+
T rtvulryz + yTratzTruv + yTreztTruv + 2T ryuvlrot+
2TryvuTlrzt + zTrtuwvTryTrz + cTriveTryTrz+
+Trzytvuz + Tratyuvz + Trezuvty + Trzzvuyt+
+TrytvuzTre + TryuwvtzTrz + TryvutzTre + TryztuvTre+
+Tryztvulre + TryzuvtTre + TretvzTryu + TrezvtTryu+
+TrytuvTrez + Trytvulrzz + Tryvwvtlrzz + TryvutTroez+
+TrztuvTray + TrzvutTrzy + TraytzTruTlrv + TreztyTruTl rv
+TrytuzlrzTrv + TryzutTreTrv + TrztuvT reTry+
+TrzvutTrzTry + TrzytTrzuwy + TratyTrzou + TrzuzTryvi+
+Trzzul'rytv + TraytTrzulre + TroyzTrivTro+
+TratyTrzulrv + TrazyTriuTro + TrytuT rezTro+
+TryutTrzzTrv + TrztulrzyTrv + TrzutTrezyTro+
+TrzyzlrtlTrulry + TrezyTrtTrulrv+
+TryztTraTrulrv + TrytzTraTrulro+
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+TrtuvlrelryTlrz + TrivulralryTrz+
+Trztul reTryTrv + TrzutTreTryTro+
+TraTryTrzTrtTruTrv.

We have also calculated the polynomial fs for p = 3, but this polynomial
cannot be written down since it contains more then 1000 summands. Finally,
we are sure that the other polynomials fi cannot be calculated by any computer.
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MODULES WHICH ARE
SELF-PROJECTIVE RELATIVE TO
COCLOSED SUBMODULES

Derya Keskin

Abstract

Let M; and M; be modules. The module M, is called M;-cc-
projective if every homomorphism o : M» — M,/K, where K is a
coclosed submodule of M, can be lifted to a homomorphism 8 : My —
M;. Let M be an amply supplemented module. Then M is lifting if
and only if every module is M-cc-projective.

Let M = M, &®---® M, be a finite direct sum of relatively projective
modules M;. Assume M is amply supplemented. Then M is self-cc-
projective if and only if each M; is self-cc-projective. '

1 Introduction and Preliminaries

Throughout this paper all rings will have an identity and all modules will be
unital right modules. Let M be a module. If NV is a submodule of M, we write
N < M and if N is small in M, we write N <« M.

Let M be a module and A < B < M. If B/A « M/A, then A is called
a coessential submodule of B in M. A submodule K of M is called coclosed
(denoted by K <., M) if K has no proper coessential submodule in M. Given
a submodule N of M, a submodule K of M is called a supplement of N in M
if K is minimal in the collection of submodules L of M such that M = L+ N,
equivalently, M = N + K and NN K « K. A submodule K of M is called
a supplement in M if there exists a submodule N of M such that K is a
supplement of N in M. Any module M is amply supplemented if for any
submodules A, B of M with M = A + B there exists a supplement P of A
such that P C B. The module M is called weakly supplemented if for every

Key Words: small projective module, self-cc-projective module, lifting module.
Mathematical Reviews subject classification: 16199, 16D99.
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submodule A of M there exists a submodule B of M such that M = A + B
and ANB K M.

Note that every supplement submodule of any module M is coclosed in
M, and if M is weakly supplemented then every coclosed submodule of M is
a supplement in M (see [2, Lemma 1.1].

Let M be a module. M is called a lLfting module if for any submodule N
of M, there exists a direct summand K of M such that K < N and N/K <
M /K, equivalently, for every submodule N of M there exist submodules K, K’
of M such that M = K@ K', K < N and NN K’ « K'. By [3, Proposition
4.8], the module M is lifting if and only if M is amply supplemented and every
supplement (that is, coclosed) submodule of M is a direct summand. '

Smith and Tercan [4] studied the following property for a module M:

(P,.) For every submodule K of M such that K can be written as a finite
direct sum K; @ --- @ K, of complements K;,---,K, of M, every
homomorphism a : K — M can be lifted to a homomorphism g :
M— M.

Following this idea Santa-Clara and Smith [5] are concerned with the study
of self-c-injective modules, i.e., modules M that satisfy (P;). As a dual notion
to the notion of self-c-injective modules we introduce the following definition:

Let M; and M, be modules. The module My is M;-cc-projective if every
homomorphism a : My — M;/K, where K <, M, can be lifted to a
homomorphism 8 : Mo — M. Clearly, if My is M;-projective, then M, is
M;i-cc-projective. A module M is called self-cc-projective when it is M-ce-
projective. Lifting modules are an example of modules with this property (see
Proposition 2.2). On the other hand, every self-cc-projective module need not
be lifting (Zz).

We prove general properties of self-cc-projective modules and find suflicient
conditions for a direct sum of two self-cc-projective modules to be self-cc-
projective. Let M = M, & --- & M,, be a finite direct sum of relatively
projective modules M; with M amply supplemented. We prove that M is
self-cc-projective if and only if each M; is self-cc-projective (see Theorem 2.8)

2 cc-Projectivity

Lemma 2.1. Let M be a module and let K be a coclosed submodule of M. If
M/ K is M-cc-projective, then K is a direct summand of M.

Proof. By hypothesis, there exists a homomorphism « : M/K — M that
lifts the identity 1 : M/K — M/K. It is not hard to see that M = K @
a(M/K), so that K is a direct summand of M. O
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Proposition 2.2. The following are equivalent for an aemply supplemented
module M.

(i) M is lifting.
(1) Ewvery module is M -cc-projective.
(111) For every coclosed submodule K of M, M/K is M-cc-projective.

Proof. (i)=(ii) Let N be any module. Let o : N — M/K be any
homomorphism with K <., M. Since every coclosed submodule of M is a
direct summand of M, now the proof is clear. Obviously, (ii) implies (iii).
That (iii) implies (i) follows by Lemma 2.1. O

The Priifer p-group Z(p*™) is a lifting Z-module. Therefore by Proposition
2.2, Z(p™) is self-cc-projective, but it is not self-projective.

Corollary 2.3. The following are equivalent for any semiperfect ring R.
(i) Every right R-module M is R-cc-projective.
(ii) For every coclosed right ideal I of R, R/I is R-cc-projective.

Lemma 2.4. Let M, and My be modules. If My is My-ce-projective, then for
every coclosed submodule N of My, M, is N-cc-projective. Moreover, if My
is weakly supplemented, then for every coclosed submodule N of My, M, is
(Ms/N)-cc-projective.

Proof. Let N be a coclosed submodule of M,. Clearly, every coclosed
submodule of N is a coclosed submodule of My. Therefore it is obvious that
M; is N-cc-projective. Let us prove that M; is (Ms/N)-cc-projective and
assume that M, is weakly supplemented. Let X/N be a coclosed submodule
of My/N. By [2, Lemma 1.4(2)], X is coclosed in My. Let f : My —
(M3/N)/(X/N) = My/X. Since M; is Ma-cc-projective, it can be easily seen
that My is (My/N)-cc-projective. O

Lemma 2.5. Let M and {N; | i € I} be modules. Then ®;c;N; is M-cc-
projective if and only if N; is M -cc-projective, for every i € I.

Proof. The proof follows as for projectivity (see for example, [3, Proposition
4.32]. O

The modules M; and M, are relatively cc-projective if M; is M;-cc-projective,
for every i,7 € {1,2}, ¢ # j.
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Corollary 2.6. Let M; and My be modules. If M) ® My is self-cc-projective,
then M; and My are both self-cc-projective and relatively cc-projective. In
particular, a direct summand of a self-cc-projective module is self-cc-projective.

Proof. By Lemmas 2.4 and 2.5. O

Let M; and My be modules. The module M; is small My-projective if
every homomorphism f : M; — M3/A, where A is a submdule of M> and
Imf « M,/A, can be lifted to a homomorphism g : M; — Mj. It is clear
that if the module M; is My-projective then M; is small My-projective. Since
the Z-module Z/2Z & Z /8Z is not lifting (see [1, Corollary 2]), which is amply
supplemented, there exists a Z-module N such that N is not Z/2Z & Z/8Z-
cc-projective by Proposition 2.2 although N is both Z/2Z-cc-projective and
Z/8Z-cc-projective. In this vein we prove the following lemma.

Lemma 2.7. Let My and My be modules with M = M1 ® M, amply supplemented
such that My is small Mo-projective. If any module N is M,-cc-projective and
M, -projective, then it is M -cc-projective.

Proof. Let K <. M and consider the homomorphism o : N — M/K and
the natural epimorphism 7 : M — M/K. Since M/ K is amply supplemented,
by [2, Proposition 1.5], there exists a submodule H/K of M/K such that
H/K < (K+M))/K,(K+M)/H « M/H and H/K <.. M/K. Note that by
[2, Lemma 1.4(2)], H <. M. Since K+ M, = H+M,, (H+M)/H <« M/H.
Therefore, there exists a submodule H' of H such that M = H' & M, by
[2, Lemma 2.4 or Proposition 2.6]. As M, and M/H' are isomorphic, N is
M /H'-cc-projective. Let 8 be the epimorphism from M/K to M/H defined
by B(m + K) = m + H for all m + K € M/K and m the epimorphism
from M/H' to M/H = (M/H')/(H/H') defined by m(m + H') = m + H
for all m + H' € M/H'. Since N is M/H'-cc-projective, there exists a
homomorphism g : N —— M/H' such that m1g = BSa. Now, consider the
following homomorphisms:

! i T
N2 M/H' =M, “5 M 5 M/K

where ¢, is the inclusion map and f is the isomorphism from M/H' to M.
Then we have the homomorphism 7%, fg : N — M/K. Take any element
n in N, and suppose a(n) = m’ + K and g(n) = m + H' with m,m’ € M.
Therefore, mg(n) = Ba(n) implies that m — m' € H. Write m = m; + mo
where m; € M; and my € Ms. Now,

(m1fg — a)(n) = wir fg(n) — a(n) =
=rirf(m+H) —(m' +K)=mi1 f(mi +me+ H) = (m' + K) =
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=7iy(my) — (m' + K) = w(ma) — (m' + K) =
=ma+K-(mM+K)=my+ma—-m' —m + K

implies that Im(niyfg—a) C (H + M1)/K = (K + M;)/K. Consider the
inclusion map %2 : (K + M1)/K — M/K. Since Im(wi1 fg — o) C Im(ig) =
(K + M)/ K, there exists a homomorphism v : N — (K + M;)/K such that
i9y = i1 fg — a. Let mp : My — (K + M;)/K be the natural epimorphism.
Since N is M;-projective, v can be lifted to a homomorphism ¢ : N — M;.
Consider, finally, the homomorphism 8 = i1 fg—¢ : N — M. Let n € N.
Then

m0(n) = n(i fg — ¢)(n) = mi1fg(n) — wp(n) =
=iy fg(n) — a(n) + a(n) — md(n) = (ri1 fg — ) (n) + a(n) — izy(n) = a(n).
Therefore, & can be lifted to the homomorphism 6 and NV is M -cc-projective.

a

We can now prove the following theorem.

Theorem 2.8. Let My, - -, M, (n € N) be relatively projective modules with
M=M - - &M, amply supplemented. Then M 1is self-cc-projective if and
only if M; is self-cc-projective, for every i € {1,---,n}.

Proof. By Lemmas 2.5 and 2.7, using induction. O
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DECOMPOSITIONS OF ASSOCIATIVE
RINGS

Vladimir Kirichenko

Abstract

We introduce the notion of a quiver of a ring associated with an
ideal and obtain a decomposition theorem in case when this ideal is
T-nilpotent. We prove that right perfect domains are piecewise semi-
primary.

1. Introduction

Let A be an associative ring with 1 # 0, R be the Jacobson radical of the
ring A and Pr(A) be the prime radical of A.

As usual, a ring A is called decomposable if it decomposes into a direct
product of two rings, otherwise the ring is indecomposable.

Definition 1.1 A ring A is called finite decomposable ring, or simply F.D-
ring, if A is a direct product of a finite number of indecomposable rings.

Obviously, right Noetherian rings and semi-perfect rings are F D-rings.
The next theorem is well-known (see, for example, [AF]). It is suitable for
us to formulate this theorem in the following form:

Theorem 1.2 Fvery finite decomposable ring A has a unique decomposition
into a finite direct product of indecomposable rings, i.e. if

A=B; x...xB;=Cy x...xC}
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are two such decompositions then s = t and there ezists a permutation o of
{1,...,8} such that B; = C,;y (i=1,...,8).

Definition 1.3 Following Gabriel a finite oriented graph is called quiver.
A quiver without multiple arrows and multiple loops is called a simply laced
quiver.

Denote V@Q = {1,...,s} - a set of the all vertices of the quiver ¢ and AQ
— a set of the all arrows of @. Then we write @ = {VQ, AQ} and [Q] = (¢;;)
is adjacency matrix of Q.

Let M,(R) be the set of all real matrices of order n. Denote P, =
>, eir(s) Where 7 is a permutation of the letters 1,2,...,n and e;; are
corresponding matrix units. Clearly, PY P, = P,PT. The matrix P, is a
permutation matrix.

Definition 1.4 A matrix B € M, (F) is called permutational reducible if
there exists a permutation matrix P, such that

T _{ By By
P; BPT_< 0 B, ,

where By and B, are squére matrices of the order less then n.

Proposition 1.5 For any matric B € M, (R), there exists a permutation
matriz P, such that

Bl B12 Blt
P;p BP, = 0 By .. By ’
0 0 ... B
where the matrices By, B, ..., B are permutational irreducible.

Proof. Consider an arbitrary matrix B € M, (R). If it is permutational
reducible then there exists a permutation matrix P; such that
cC X
T
ron- (2 5).
If some of matrices C and D is permutational reducible, then obviously the
matrix B can be transformed by means a permutation matrix P, to the form:

K XY
PIBR,=| 0 L Z
0 0 M
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If anyone of the matrices K, L, M is permutational reducible, then this
process can be continued. In several steps, we obtain the proof of proposition.

Let @ be a quiver and V@Q = {1,...,s}. If an arrow ¢ connects the vertex
1 with the vertex j then i is called the beginning and j the end of . It will be
denoted as o : 1 = j.

A path of quiver @ from a vertex i to a vertex j is an ordered set of k
arrows such that the beginning of each arrow is the end of the previous one,
the vertex 4 is the beginning of o7 , while the vertex j is the end of o}.

Definition 1.6 A quiver is called strongly connected if there is a path
between any two of its vertices. By convention, one-pointed graph without
arrows will be considered as strongly connected quiver.

Proposition 1.7.[Lan, ch.9]. 4 quiver Q is strongly connected if and only
if the adjacency matriz [()] is permutational irreducible.

From Propositions 1.5 and 1.7 we obtain such assertion.

Proposition 1.8 There exists a numeration of the vertices of the quiver
Q such that

B, Bys .. B
@=| 0 o B
0 0 .. B,
where the matrices By, . .., By, are permutational irreducible, i.e. corresponding

to the strongly connected components of the quiver ().

Definition 1.9 The numeration of the vertices of @ will be called standard
if [@] has form as in the proposition 1.8.

2. Quiver associated with an ideal

Let J be a two-sided ideal of a ring A contained in the Jacobson radical R
of A such that the idempotents can be lifted modulo J. )

Definition 2.1 The factor-ring A/J will be called the J-diagonal of the
ring A.

In particular, if J = Pr(A), then Pr(4) C R and the idempotents can be
lifted modulo Pr(A).
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Definition 2.2 The factor-ring A/Pr(A) is called the diagonal of the ring
A

Definition 2.3 A ring A is called a ring with finitely decomposed J-
diagonal, or simply FD(J)-ring, if its J-diagonal A/J is a FD-ring.

If J = Pr(A) we have such definition.

Definition 2.4 A ring A is called a ring with finitely decomposed diagonal,
or simply FDD-ring, if its diagonal A/Pr(A) is a FD-ring.

For arbitrary FD(J)-ring A we will build the quiver Q[4, J].

Consider the J-diagonal of the F'D(J)-ring A: A= AlJ = Al x.ox Ay,
where all rings Ai,...,A; are indecomposable and 1 = f; +... + ft is the
corresponding decomp031t10n of 1 € A into a sum of mutua.lly orthogonal
central idempotents, i.e. fiAf, = ;A= Afy = A;fori=1,...,t. Put
W = J/J?. Establish the correspondence between idempotents fi,..., f; and
vertices 1,...,t connecting a vertex ¢ with a vertex j by an arrow with the
beginning at ¢ and the end at j if and only if fiw f] # 0. The obtained finite
oriented graph Q(A4, J) will be called the quiver associated with the ideal J.

Taking into account Theorem 1.2, one can easily see that the quiver Q(4, J)
of the FD(J)-ring A is defined uniquely up to a renumeration of the vertices
and Q(4,J) = Q(4/J*,W).

By definition the quiver Q(4,J) is the simply-laced quiver the adjacency
matrix [Q(A, J)] is the (0, 1)-matrix.

Definition 2.5 A quiver Q(A4, Pr(A)) of FDD-ring A will be called the
prime gquiver of the ring A.

Suppose that J be a two-sided ideal of a ring A contained in the Jacobson
radical R of FD(J)-ring A such that the idempotents can be lifted modulo J.
Let A= A/J = A1 x...X Ay be a decomposition of A into a direct product of
indecomposable rings Al, .,Asand let 1 = f; +...+ f; be the corresponding
decomposition of 1 € A 1nto a sum of mutually orthogonal idempotents.

By [Lam, Ch.3] theidempotents fi, .. ., f; can be lifted modulo J preserving
the orthogonality: 1= fi +...+ f¢, where fif; =d;;f; and fi= fi + J (4,5 =
1,...,t).

Let A;; = fiAf; and J; = fiJf; (i,7 = 1,...,t). Then we have the
following two-sided Peirce decomposition of A and J:

A A . Au
A= Agr Age .. Ay ’ (1)
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Ji Aip . Agg

A21 J2 A2t

J= 2)

Atl AtZ Jt

Definition 2.6 The two-sided Peirce decomposition of FD(J)-ring 4 will
be called J-standard, if Q(A,J) has a standard numeration of its vertices.

Definition 2.7 The two-sided Peirce decomposition of FDD-ring A will
be called standard, if PQ(A) has a standard numeration of its vertices.

3. Decomposition of rings with T-nilpotent ideal.

A ring A is called semi-primary if the factor ring A/R is artinian and R is
nilpotent.

A ring A is called semi-perfect if the factor ring A/R is artinian and the
idempotents can be lifted modulo R [B].
Obviously, every semi-primary ring is semi-perfect.
We’ll give an important definition of T-nilpotentency introduced by H.Bass
[B]. *

Definition 3.1 A set S is called right (resp. left) T-nilpotent if for any
sequence ai,as,.-..,dn,... of elements of S, there exists a positive integer k
depending on the sequence such that agag—1...a1 =0 (ay...ax-1a5 = 0).
A set S is called T-nilpotent if it is right and left T-nilpotent.

Clearly, any T-nilpotent ideal (right, left, two-sided) is a nil-ideal.

A ring A is called right perfect (left perfect) if R is right (left) T-nilpotent
and A/R is artinian. A right and left perfect ring is called perfect.

Obviously, every right (left) perfect ring is semi-perfect.

Theorem 3.2 [Ka, §11.5] For any right ideal I in a ring A, the following
conditions are equivalent:
(1) T is right T-nilpotent.
(2) A right A-module M, that satisfies the equality MZ = M, is equal to zero.
(8) For any nonzero right A-module M it holds MT # M.
(4) ATT # AY, where AT is a free module of a countable rank.

Lemma 3.3 If J be a two-sided right T -nilpotent ideal of a ring A, then
eJe is right T-nilpotent ideal of a ring eAe for every nonzero idempotent e € A.



58 v V. KIRICHENKO

Proof. Obviously, a set eJe is a two-sided ideal of a ring ede. Let
a1,ag,... be a sequence of elements of eJe. Since eJe C J, then for some
k we have agag_1...a1 = 0.

Theorem 3.4 The following conditions are equivalent for a ring A with
T -nilpotent ideal J:
(1) A is indecomposable.
(2) The factor ring A/J? is indecomposable.

Proof. (1) = (2). Suppose that the factor ring A = 4/J% = A} x 4,
and 1 = fi + fa is a corresponding decomposition of the identity I of the ring
A into a sum of orthogonal central idempotents of A. Since J? is a nil-ideal
then there exist idempotents f), fo € A such that 1 = fi + fy and f; = f1 +J2,
fo=fa+J%

Consider the two-sided Peirce decomposition of the ring A corresponding
to the decomposition 1 = f; + fo:

(A X
a=(¥ 4)
where Ai = -fiéfi ('L = 1,2_), :X_: flAfg, Y = fZAfl-
Since fiAfo =0 and fbAf; =0, then X C J? and Y C J2, where from

X = f1J2f2 and Y = f2J2f1-
Computing J?, we obtain:

Jg_ J12+XY HhX +XJp
TA\YL+ LY JE+YX

Since X = fiJ%foand Y = foJ?fi then X = 1 X+ X, and Y =Y J; + J,Y.
Since J is T-nilpotent then due to lemma 3.3 and theorem 3.2 we get that
X =0and Y =0. Therefore A = 4; x Ay and the implication (1) = (2) is
proved.

The inverse implication (2) = (1) is obvious.

Using theorems 3.3, 3.4 and standard two-sided Peirce decomposition of
the FDD-ring A with T-nilpotent prime radical, we can prove the following
theorem:

Theorem 3.5 Let A be an FDD-ring. The prime quiver of an FDD-ring
A with the T -nilpotent prime radical Pr(A) is connected if and only if the ring
A s indecomposable.

Definition 3.6 A ring A with finite decomposable diagonal will be called
connected if the prime quiver PQ(4) of FDD-ring A is connected.
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Taking into account that the prime radical of the right Noetherian ring is
nilpotent [Lam, Ch.3], one can obtain the following result.

Corollary 3.7 A right Noetherian ring has a unique decomposition into o
finite direct product of connected rings.

4. Right perfect piecewise domains are semi-primary

Proposition 4.1 [B], [F, ch. 22, Th.22.9] If a ring A is right (left) perfect,
then every nonzero left (right) A-module has nonzero socle.

Denote M, (D) a ring of all square matrices of the order n over the division
ring D.

Theorem 4.2 If A is a semi-prime semi-perfect indecomposable ring and
A% M,(D), then socy A= socAs =0.

Proof. Obviously, we can assume that A is a reduced ring, i.e. A/Ris a
finite direct product of division rings. We’ll show that S, = soc A4 equals zero.
IfS. C Rthen S,R=0and S?=0. Now S, ¢ R. Let A=P, ®...® P, be
a decomposition of A into a direct sum of indecomposable projective modules
and U; = P;/P,R, i=1,...,s, are simple and ¢ > 1.

Then from S, ¢ R we obtain that at less one of the modules P,..., P,
(for example, P, = e, A and €2 = ¢,) is simple.

Denote f = 1—e, and e = e,. We have such two-sided Peirce decomposition:

_( JAS fAe
Aa(eAf eAe)'

Obviously, eAf = 0 and so
{0 fAe
- ( o s ) .
is the nonzero ideal of A (A — the indecomposable ring) and Z? = 0. We have
contradiction and S, = 0. Analogously, S; = 0. Consequently, A = P, and

in the general case, we have A = Pl* and A ~ Enda Pl = M,(E(Ps)), where
D = E(P,) is the division ring. Theorem is proved.

Corollary 4.3 Every semi-prime right (left) perfect ring is a semi-simple
artinian ring.

Corollary 4.4 The Jacobson radical and the prime radical of right (left)
perfect ring are coincides.
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We will give a definition of piecewise domain [GS] in a semi-perfect case.

Definition 4.5 A semi-perfect ring A is called a piecewise domain if every
nonzero homomorphism of indecomposable projective A-modules is monomorphisn

Proposition 4.6 [GS] A prime radical of a piecewise domain is nilpotent.

Proposition 4.7 [Kirl],[Kir3] A semi-perfect semi-hereditary ring is a
piecewise domain.

From proposition 4.6 and corollary 4.4 we have the next theorem.
Theorem 4.8 A piecewise right perfect domain is a semi-primary ring.
This theorem is a generalization of one theorem of Teply [T].
Definition 4.9 [P] A quiver without oriented cycles is called acyclic.

Theorem 4.10 [KSY, Theorem 3.3] The prime quiver PQ(A) of a semi-
perfect piecewise domain A is an acyclic simply laced quiver.

Theorem 4.11 If J be a two-sided right T-nilpotent ideal of FD(J)-ring
and o quiver Q(A,J) is acyclic, then J is nilpotent.

Proof. Let ¢t be a number of the vertices of a quiver Q(A, J). Now we will
prove by induction by ¢ that an ideal J is nilpotent.

In the case t =1 J? = J and by Theorem 3.2 J = 0.

Let ¢t > 1. We will suppose that a numeration of the vertices of the quiver
Q(A,J) is standard. Then a vertex ¢ is a sink.

Let
A A o Ay
A — .A21 A22 cee A2t
An Ap ... Ay

be the J-standard two-sided Peirce decomposition and 1 = fi + ... + f; is
the corresponding decomposition of 1 € A into a sum of mutually orthogonal
idempotents.

Denote Fy = fande=1—-f. Let J1 =eJeand fJf = Js, X = eAf and
Y = fAe. :

Consider the two-sided Peirce decomposition of the ideal J:

(h X
J—(Y JQ).



DECOMPOSITIONS OF ASSOCIATIVE RINGS 61

Computing J2, we obtain:

J2 = R+XY LhX+XJ
TAYL+ LY J2+YX

Since the vertex ¢ is a sink we have that ffW f; = 0fori =1,...,¢t and
consequently J2 +Y X = Jy and YJ; + JoY =Y. By Theorem 3.2, J; =YX
andY =Y. SoY =LY =YXYCYJiand Y =0.

(X

Therefore, J = 0 Jy
and so J is nilpotent. Theorem is proved.

). By induction, J; and J; are nilpotent ideals,

Let J be as above.

Corollary 4.12 A degree of a nilpotentency of an ideal J is less or equal
t, where t is a number of the vertices of a quiver Q(A, J).

From Theorems 4.10 and 4.11 we have obtained another proof of Theorem
4.8.
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SPECIAL SUBGROUPS OF SKEW LINEAR
GROUPS

M. Mahdavi-Hezavehi

Abstract

Let D be an infinite division algebra of finite dimension over its
centre Z(D) = F and n is a positive integer. The structure of maximal
subgroups and finitely generated subnormal subgroups of skew linear
groups are investigated. In particular, assume that N is a normal
subgroup of GL,(D) and M is a maximal subgroup of N containing
Z(N). It is shown that if M/Z(N) is finite, then N is central.

Let n be a positive integer and D be an infinite division algebra of finite
dimension over its centre. In this note we investigate the structure of some
particular subgroups of GL, (D). We recall that finite subgroups of GL; (D)
are completely classified by Amitsur in [1], and there exist also some results
concerning the case n > 1 in the literature (cf. [17]). Here we are interested
in the structure of infinite subgroups of GL, (D). The structure of subnormal
subgroups of GL, (D) is investigated in [2-3], and [13]. Here, we present shorter
proofs for some of the results given in those papers, and we shall then apply
the results to present some interesting facts about the behaviour of maximal
subgroups of GL, (D) with n > 1. More precisely, let D be an infinite division
algebra of finite dimension over its centre F' and let n be a positive integer.
Given a normal subgroup N of GL, (D), assume that M is a maximal subgroup
of N containing Z(N). It is shown that if M/Z(N) is finite, then N is central.
It is also proved that if M is a maximal subgroup of GL, (D) containing F*
and [M : F*] < 00, then D = F. In this direction we also show that if D is
algebraic over its centre F', then the finiteness of M implies that of D. For
more recent results on the structure of subgroups of GL,(D) one may consult
[2], [4], [7-9], and [12]. We begin the material of this note with

Key Words: Division ring, subnormal, finitely generated.
Mathematical Reviews subject classification: 15A33, 16K40
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Lemma 1. Given a division ring D with centre F, assume that M is
a mazimal subgroup of D*. Then either Z(M) = F*NM or MU {0} is a
mazimal division subring of D.

Proof. By Proposition 1 of [3], we know that either F* C M or the derived
group D' C M. If D' C M, then M is normal in D*. Now, using Proposition
4 of [11], we obtain Z(M) = F*N M. If F* C M and D’ is not contained in
M, then take the division ring F(M) generated by F and M. By maximality
of M in D*, we have either F(M)* = M or D = F(M). If the last case occurs,
then it is easily checked that Z(M) = F* N M. Otherwise, F(M)* = M or
equivalently M U {0} is a division subring of D which is obviously maximal.

To prove our next result, we shall use the following theorems:

Theorem A. Let D be o division ring with centre F'. If the derived group
D' is radical over F, then D is commutative.(cf. [9]).

Theorem B. Let D be a division ring with centre F', and assume that M
is a mazimal subgroup of D* containing F*. If[M : F*] < oo, then D = F.(cf.
[3])-

Theorem C. Let D be o division ring with centre F' and put A = M,(D),
A* = GL,(D), and A' = SL,(D), where n > 1. Then we have

(1) If A’/ Z(A") is torsion, then D = F.

(2) If each element of A’ is algebraic over F', then A* is algebraic over F.(cf.
[10]).

Theorem 2. Let D be a division algebra algebraic over its centre F' and
n is a positive integer. Assume that M is a mazimal subgroup of GL,(D). If
M is finite, then so is D.

Proof. We consider two cases:

Case 1. Assume that n = 1. We know, by Propositon 1 of [3], that either
F*cMorD cM.If D) C M, then D’ is torsion and thus, by Theorem A,
we obtain D = F. So M is a maximal subgroup of F*. Now, take an element
z € F*\M, then F* =< g, M >, where M =< z;,--- ,z, >. This shows that
F* is finitely generated. Now, by a result of [2], we conclude that F* is finite
and so the result is established in this case.

Case 2. Assume now that n > 2. Therefore, either F* C M or SL,(D) C
M. If SL,(D) C M, then SL,(D) is torsion and so, by Theorem C, we
conclude that D = F. Take an element A € F* and consider the diagonal
matrix B whose diagonal entries are A\, A7!,1,---,1. It is clear that B €
SL,(D) and so B™ = I and consequently A" = 1. Therefore, any element of
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F* gatisfies the equation 2" =1 and so F’ must be finite and the result follows
in this case. If F* C M, then F is finite and so D is algebraic over a finite
field. Thus, by a theorem of Jacobson (cf. [5]), we conclude that D = F' is
finite, and the proof is complete.

In the theory of groups, there are infinite groups in which each proper
subgroup has a prime order {cf.[14]). Thus, in a group G if a maximal subgroup
is finite we may not conclude that G is finite. But for a linear group the
situation is different as the following result shows. The idea of the following
proof is due to M. Mahmudi.

Theorem 3. Let G be a linear group that is not simple, and M be a
mazimal subgroup of G. If M is finite, then so is G.

Proof. Assume on the contrary that G is infinite. Since M is finite we
may easily conclude that G is finitely generated. Since G is not simple we
have G’ # G. If the derived group G’ is contained in M, then M is normal in
G and consequently G/M = Z, for some prime number p. This contradicts
our assumption that G is infinite. So, there exist normal subgroups that are
not contained in M and let N be one of those normal subgroups. Then we
have G = MN and so we obtain G/N =2 M/M NN. Thus [G: N] < |M| =
r. Assume that z € G\M and put M = {z1,--,z,.} and consider r + 1
elements z,2;,--- ,2,. By Malcev’s Approximation Theorem (cf.[18]), there
exist a finite field k and a homomorphism ¢ from G into GL,(k) such that
d(z), ¢(z1),- - ,Pp(z,) are distinct and so [G : Kerg] > r. Since Ker¢ is
infinite we conclude that Ker¢ is not contained in M. This contradiction
establishes the result.

The above theorem may be used to give a short proof of the following result
which is first appeared in [3].

Corollary 4. Let D be a division algebra of finite indezx over its centre
F, and assume that M is a mazimal subgroup of D* containing F*. If [M :
F*] < o0, then D = F.

Proof. Since the index of D over F is finite we may assume that D is
a linear group. We know that F™ is closed in D* with the Zariskii topology.
Thus, by a result of Chevalley (cf. [18]), D*/F* is a linear group. Now,
since M/F* is maximal and finite in D*/F*, by Theorem 3, we conclude that
D*/F* is finite. Finally, use Kaplansky’s Theorem (cf. [6]) to obtain D = F.

We now turn to investigate the structure of finitely generated subnormal
subgroups of GL,(D). Let D be a division algebra of finite dimension n over
its centre F. Then each element of D may be viewed as an element of M, (F)
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by means of the regular representation. If D is finitely generated as a ring,
then we may view D as a finitely generated Z-algebra or Zg-algebra, where p
is the characteristic of D, i.e., D =< dj,--- ,d, >. Take an element a € F.
Since each element of D may be written as a sum and product of d;, the
representation of a in M, (F) is of the form al, where I is the unit matrix
of M,(F). Denote by R the ring generated by all entries of the matrices
of representations of d;. Then, we have a € R and since a is arbitrary we
conclude that R C F and consequently R = F. If CharF = 0, then we
have Z C Q C F, where Z and Q denote the ring of integers and the field
of rational numbers, respectively. Since F' is finitely generated as a Z-algebra,
we conclude that it is finitely generated as Q-algebra. This implies that F is
finitely generated as a @ module. Thus @ is finitely generated as a Z-module
which is nonsense. So we may assume that CharF = p > 0. Therefore, F
is finitely generated as a Zymodule. Thus, F' is a finite extension of Z,, i.e.,
F is finite. Now, since D is of finite dimension over F' we conclude that D
is finite by Wedderburn’s Theorem. Therefore, we have shown that if D is
finitely generated as a ring, then D is finite. This is a useful observation and
will be used in the proofs of later results.

The next result was first appeared in [3] and its proof was very long.
Here we shall give a short proof of the result using the theory of rings with
polynomial identities.

Corollary 5. Let D be a division algebra of finite index over its centre
F and N be a normal subgroup of D*. If N is finitely generated, then N is
central.

Proof. If N is non-central, by a theorem of Scott (cf. [16]), we conclude
that NV is not abelian. Thus, there exist elements a,b € N such that ab # ba,
put ¢ = ba—ba. Since c is algebraic over F we have ¢ +ay 16 14+ --4ag =0
where a; € F. Denote by R the ring generated by N and a,_i,--- ,al,agl.
Since a; is central we conclude that R is normal in D. Let M be a proper
maximal left ideal of R. Since R is normal in D, by Cartan- Brauer-Hua
Theorem (cf. [6]), we may conclude that M is also a maximal right ideal in R
and so E := R/M is a division ring. Since D is of finite index we may assume
that D is embedded in M, (F), where n is the dimension of D over F. Now,
by Amitsur-Levitzki Theorem (cf. [15]), D satisfies the polynomial S;, and
so does E. Thus, by Kaplansky’s Theorem on primitive rings with polynomial
identities (cf. [15]), E is of finite dimension over its centre. Now, since R is
finitely generated, we may conclude that F is finitely generated. Therefore, by
the remark made before the theorem, E is finite and so E is commutative by
Wedderburn’s theorem, i.e., (a + M)(b+ M) = (b+ M)(a+ M). This means
that ¢ = ab — ba € M. On the other hand, we have ¢c™! € R since a5! € R.
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Thus, 1 = cc™! € M which is in contradiction to the fact that M is proper,
and so the result follows.

Corollary 6. Let D be a division algebra of finite index over its centre F
and N be a normal subgroup of D*. If NN D' is finitely generated, then N is
central.

Proof. Assume that N is not central. If D' C N, then N N D’ = D' and
so D' is finitely generated. By Theorem 5, we conclude that D’ is central.
Now, by Theorem A, we obtain D = F which contradicts the fact that N is
non-central. Otherwise, NND' is normal in D* and so, by Theorem 5, NN D'
is central. But this contradicts a result of Scott (cf. [16]) which asserts that
the intersection of non-central normal subgroups of D* is non-central and this
completes the proof.

Corollary 5 is also true for finitely generated subnormal subgroups of D*.
In fact, the following more general result is shown in [13]:

Theorem D. Let D be an infinite division algebra of finite dimension over
its centre F. Assume that N is a subnormal subgroup of GL, (D) with n > 1.
If N is finitely generated, then N C F™.

Using the above results one is able to strengthen Theorem 2 in the following
form

Theorem 7. Let D be an infinite division algebra of finite dimension over
its centre F' and n is a positive integer. Assume that M is a mazimal subgroup
of GL,(D) containing F*. If [M : F*] < o0, then D = F.

Proof. Let 2;,...,%¢ be the representatives for cosets of F* in M, i.e.,
M = F*z; U...U F*z;. Then, we have M =< z1,...,2: > F*, where
< T1,...,Z¢ > is the group generated by z1,...,2;. Take z € GL,(D)\M.
By maximality of M, we obtain GL,(D) =< a1,...,z,2 > F*. Put H =<
Z1,...,%t, 2 >. Thus, GL,(D) = HF* and consequently we have SL,(D) =
H' C H,i.e., H is normal in GL,(D). Now, by Theorem D, we conclude that
H C F*,ie., D* = F* which implies that D = F.

Finally, we are now in a position to prove a more general form of Theorem
D as the following

Theorem 8. Let D be an infinite division algebra of finite dimension over
1ts centre F' and n be a positive integer. Assume that N is a normal subgroup
of GL,(D) and M is a maximal subgroup of N containing Z(N). If M/Z(N)
18 finite, then N is central.

Proof. Let z1,...,7; be the representatives for cosets of Z(N) in M, i.e.,
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M = Z(N)z; U...U Z(N)z;. Then, we have M =< z1,...,2; > Z(N),
where < z,...,z; > is the group generated by z1,...,z:. Take z € N\M.
By maximality of M, we obtain N =< z1,...,2s,2 > Z(N). Put H =<
Z1,..-,t, ¢ >. Thus, N = HZ(N) and consequently we have N' = H' C H,
i.e., H is normal in N since Z(N) = NN F* by Proposition 4 of [11]. Thus H
is normal in N and so H is subnormal in GL, (D). Now, by Theorem D, we
conclude that H C F*,ie.,, N = HZ(N) C F* which completes the proof.

It is believed that all the above results are true when D is a general division
ring not necessarily of finite dimension over its centre.

The author would like to thank the Research Council of Sharif University .
of Technology for support.
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INTEGRAL REPRESENTATIONS OF
FINITE GROUPS AND GALOIS STABILITY

Dmitry Malinin

Abstract

For a given algebraic number field ' we consider a normal extension
E/F of finite degree d and finite abelian subgroups G C GL,(FE) of a
given exponent . We assume that G is stable under the natural action
of the Galois group of E/F and consider fields E = F(G) that are
obtained via adjoining all matrix coefficients of all matrices g € G to
F. It is proved that under some reasonable restrictions for n any F
can be realized as F(G), while if all coefficients of matrices in G are
algebraic integers, there are only finitely many fields E = F(G) for
prescribed integers n and t or prescribed n and d. Some related results
and conjectures are considered.

1 Introduction

In this paper some arithmetic problems for representations of finite groups over
algebraic number fields and arithmetic rings under the ground field extensions
are presented.

We consider some Galois extension E/F' of finite degree d with the Galois
group T for a field F of characteristic 0 and a finite abelian subgroup G C
GL,(F) of the given exponent ¢, where we assume that G is stable under the
natural coefficientwise T-action.

Throughout the paper Og is the maximal order of E and F(G) denotes a
field that is obtained via adjoining to # all matrix coefficients of all matrices
geaq.

The main objective of this paper is to prove the existence of abelian I'-
stable subgroups G such that F(G) = E provided some reasonable restrictions

Key Words: integral representations, Galois group, algebraic integers, Galois algebras.
Mathematical Reviews subject classification: 20C10, 11R33.
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for the fixed normal extension E/F and integers n,t,d hold and to study the
interplay between the existence of I'-stable groups G over algebraic number
fields and over their rings of integers. Some recent results from [1], [5], [6] are
presented in section 2.

The results related to the Galois stability of finite groups in a situation
similar to ours arise in the theory of definite quadratic forms and Galois
cohomologies of certain arithmetic groups if F is an algebraic number field
and G is realized over its maximal order ([2], see also [8]). In our context
we study whether a given field £ normal over F' can be realized as a field
E = F(G) in both cases G C GL,(E) and G C GL,(Og), and if this is so
what are the possible degrees n of matrix representations and the structure of
G. Some similar questions for I'-stable orders in simple algebras are considered
in [9], see also [10] for some applications.

We give a positive answer to the first question: we prove that any finite
normal field extension E/F can be obtained as F(G)/F if n > ¢g(t)d where
¢e(t) = [E(¢:) : E] is the generalized Euler function and (; is a primitive
t-root of 1. An explicit construction of these fields is given in Theorem 2 in
sections 3 and 4. In fact, we construct some Galois algebras in the sense of
[4], and we establish the lower bounds for their possible dimensions. We show
(see Theorem 3 in section 3) that the restrictions for the given integers n,t,
and d in Theorem 2 can not be improved.

The situation becomes different if F is an algebraic number field and all
matrix coefficients of g € G are algebraic integers.

The existence of any Galois stable subgroups G C GL,(Og) such that
F(G) # F is arather subtle question. In particular, for F = Q all fields F(G)
whose discriminant is divisible by an odd prime must contain non-trivial roots
of 1 [1], [5].

The paper is organized as follows. We discuss representations of finite
Galois stable groups G over integers of algebraic number fields and their
realization fields in section 2. Some general conjectures are given. But since
they are reduced in [7], [5] to considering abelian groups G (and even elementary
abelian G of prime exponent p), the further results of this paper deal mainly
with representations of abelian groups G. We state an existence criterion, a
finiteness theorem and some related results from [1], [5] and [6]. In section 3
we state the results of the similar nature for representations of abelian groups
G over fields and their realization fields, their proofs are given in section 4.

Notation

We denote C, R and Q the fields of complex, real and rational numbers. Z
is the ring of rational integers. GL,(R) denotes the general linear group over a
ring R. [E : F] denotes the degree of the field extension E/F. Throughout this
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paper we write I' for Galois groups, o,y € I for the elements of I'. T';(p) C T
denotes the j-th ramification subgroup of a prime ideal p. Finite groups are
usually denoted by capital letters G, H, and their elements by small letters,
eg. g € G, h € H. We write (; for a primitive ¢-root of 1. We denote by
¢k (t) = [K({) : K] the generalized Euler function for a field K. I, stands
for a unit m x m-matrix. detM is the determinant of a matrix M. If G is
a finite linear group, F(G) stands for a field obtained by adjoining to F all
matrix coefficients of all matrices ¢ € G. For I' acting on G and any ¢ € T
and g € G we write g7 for the image of g under o-action. dim g A denotes the
dimension of K-algebra A over the field K. M,(R) is the full matrix algebra
over a ring R. Ok denotes the maximal order of a number field K.

2 Integral representations stable under the Galois action

Let K be a totally real algebraic number field with the maximal order Ok,
G an algebraic subgroup of the general linear group GL, (C) defined over the
field of rationals Q. Because of the embedding of G to GL,,(C) the intersection
G(Ok) of GL,(Ok) and G(K), the subgroup of K-rational points of G, can
be considered as the group of Og-points of an affine group scheme over Z,
the ring of rational integers. Assume G to be definite in the following sense:
the real Lie group G(R) is compact. The problem which is interesting for
applications to arithmetic groups and quadratic forms is the question: does
the condition G(Og) = G(Z) always hold true?

This problem is easily reduced to the following conjecture from the representat
theory: let K/Q be a finite Galois extension of the rationals and G C GL,(Ok)
be a finite subgroup stable under the natural action of the Galois group
I' := Gal(K/Q). Then there is the following

Conjecture 1. If K s totally real, then G C GL,(Z).
In [5] 2 steps of reduction for Conjecture 1 are proved:

— We can assume that G is an abelian group of exponent p for some integer
p (see [7], Proposition 1, [5], Proposition 1 and also Proposition 6).

— We can assume that G is irreducible under conjugation in GL,(Q) (see [5]
and Theorem B below for a more general approach).

In fact, the first step allows to consider G' to be a finite commutative
(Z/pZ)I-module for some prime p. It is also possible to assume that K/Q is
unramified outside p for this prime p (see [3]).
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There are several reformulations and generalizations of Conjecture 1. Consider
an arbitrary not necessarily totally real finite Galois extension K of the rationals
Q and a free Z-module M of rank n with basis m,,...,m,. The group
GL,(Ok) acts in a natural way on Ox @ M = @, Oxm.

The finite group G C GL,(Ok) is said to be of A-type, if there exists
a decomposition M = @Ll M; such that for every g € G there exists a
permutation II(g) of {1,2,...,k} and roots of unity €;(g) such that ¢;(g)gM; =
Miygy; for 1 <4 < k. The following conjecture generalizes (and would imply)
Conjecture 1:

Conjecture 2. Any finite subgroup of GL,(Ok) stable under the Galois
group I' = Gal(K/Q) is of A-type.

For totally real fields K Conjecture 2 reduces to Conjecture 1.

In fact, Conjecture 2 implies that any finite I'-stable subgroup of GL,(Ok)
is contained in GL,(Og) for some cyclotomic extension E/Q. In particular, -
Conjecture 2 implies, in the virtue of Kronecker—-Weber theorem, that the
commutator subgroup I of I' acts trivially on G.

Both conjectures are true in the case of Galois field extension K/Q with
odd discriminant. Also some partial answers are given in the case of field
extensions K/Q that are unramified outside 2.

Let F'(G) denote the field obtained via adjoining to F’ the matrix coefficients
of all matrices g € G. The following result was obtained in [1] (see also [5] for
the case of totally real fields).

Theorem 1. 1) Let K be a finite Galois extension of Q with an odd
discriminant, and G be a finite subgroup of G L,,(Ok) that is stable under the
natural action of the Galois group I' of the field K. Then G is of A-type.

2) Let K = Q(G) and G be a group satisfying the conditions of 1).
Furthermore, let the discriminant of K be even but divisible by at least one
odd prime///, and K contains no roots of 1 { # *1////. Then G is of A-type.

3) Let G C GL,(Ok) be a finite I'-stable subgroup and K = Q(G). Let
all primes p # 2 be unramified in K, K # Q. In this case we can assume
that G is an abelian subgroup of exponent 2. Let.us suppose that one of the
following conditions is fulfilled:

(1) for any central primitive idempotent € € KG all coefficients of the
matrix 2¢ are contained in the valuation ring Op of some prime divisor p of 2
in the ring Og for at least one p;

(2) j-th ramification group I';(p) of the ideal p is distinct from {1} for the
index j which is equal to the ramification index e of p;

(3) there is an even integer j such that T';(p) # T;4+1(p) (note that
condition (2) is a particular case of (3));
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(4) e = 2q, q is odd and T is distinct from its commutant and /—1 is not
contained in K ;

(5) e =2t

Then G is of A-type.

Corollary 1. Conjecture 1 is true for totally real Galois extensions K /Q
of degree [K : Q] < 480. If the generalized Riemann hypothesis for the zeta
function of the number field K is true, then Conjecture 1 holds also for totally
real fields K /Q with [K : Q] < 960.

Corollary 2. If all totally real fields Q({am + (5= ) have class number 1,
then Conjecture 1 holds for arbitrary solvable extensions K/Q.

Corollary 3. Conjecture 2 is true if the degree of the Galois extension
K/Q is less than 288.

Let us formulate a criterion for the existence of an integral realization of
an abelian group G with properties introduced above.

Let E, L be finite extensions of a number field F. Let Oy, OF, O}
be semilocal rings that are obtained by intersection of valuation rings of all
ramified prime ideals in the rings O, Op, Op. If F = Q we can define
OF to be the intersection of F' and Og. Let wy,wa,...,wq be a basis of Of,
over O%, and let D be a square root of the discriminant of this basis. By
the definition D? = det[Trg, p(wsw;)]i;. It is known that D = det[w3]k,m-
Let us suppose that some matrix g € GL,(E) has order ¢ (¢¢ = I,,) and all
T-conjugates g7, v € ' generate a finite subgroup G C GL,(E) of exponent
t. Let o1 = 1, 03,...,04 denote all automorphisms of the Galois group I’
of E over F. Assume that L = E((q1),{(2),---»C(n)) Where {1y, {2y, -« {(m)
are the eigenvalues of the matrix g. We shall reserve the same notations
for certain fixed extensions of ¢; to L. Automorphisms of L over F will be
denoted o1,09,...,0., 7 > d. Theorem 2 below implies the existence of the
group G provided n > ¢g(t)[E : F]. Let E = F(G) be obtained by adjoining
to F all coefficients of all ¢ € G. For an appropriate set of d eigenvalues
C1y»€2)s - - - »{(a) which depends on the primitive idempotents of algebra LG
the following Theorem is true (it is proved in [5], see also [1]):

Theorem A. Let G C GL,(E) be irreducible under GL,,(F)-conjugation.
Then G is conjugate in GL,(F) to a subgroup of GL,{O%) if and only if all
determinants

wy e Wp—1 C(l) Wg+1 - wy

a9 ] oy - o2
wely (@) Wk oo Wg

7d 7d od gd 7d
wyt owpdy Gy Wehy o -ee Wy
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are divisible by D in the ring O7.

In this theorem G is I-stable and generated by g and all g7,y € T but this
condition is not very restrictive for 2 reasons. Firstly, any I'-stable subgroup
H € GL,(E) contains subgroups like G. And by Theorem 3 below, if H is a
minimal subgroup of exponent ¢ with the property £ = F(H), then H is just
of the form given in Theorem A.

The proof of Theorem A is constructive. It is based on the commutativity
of the L-algebra LG, the L-span of G, and uses a system of linear equations
that arises from simultaneous diagonalization of commuting matrices

d d
g= ZwiBivga = Zw%’Bi: g c P)
i=1 i=1
whose solutions are the eigenvalues of commuting matrices B;, i =1,2,...,d.

In fact, it is proved that the eigenvalues of B;, j = 1,...,d are just the
elements of the set {(D;D~*)7, v are varying in the Galois group of L/F}.

We also use the fact that each semisimple matrix B € GL, (F) is conjugate
in GL,(F) to a matrix from GL,(O%) if and only if all its eigenvalues are
contained in O (see [5]):

Lemmma 1. 1) Let all eigenvalues A;, 1 = 1,2,...,n of a semisimple matrix
B C GL,(F) be contained in the ring O} for some field L D F. Then B is
conjugate in GL,(F') to a matrix that is contained in GL,(O%).

2) Conversely, if a matrix B is contained in GL,(O%), then its eigenvalues
are contained in Of.

We note that the reduction to the case of an irreducible group G is motivated
by the following easy lemma [5]:

Lemma 2. If G C GL,(E,) is a finite ['-stable subgroup which has
G L, (F)-irreducible components G;,Go, ..., Gy, and E;, F| are rings having
quotient fields E and F respectively, then F(G) is the composite of fields
F(G1), F(Gq), ..., F(Gy).

Theorem A can be used to prove the existence of I'-stable subgroups G C
GL,,(0%) with the property F(G) # F for some integer m. The following
Corollary of Theorem A reduces the problem of existence for I'-stable groups
G to the case of GL,(F)-irreducible G.

Theorem B. If there is an abelian I'-stable subgroup G C GL,(OF)
generated by g7, v € I such that E = F(G) # F as above, then GL,,(F)-
irreducible components G; C GL,, (E), i = 1,...,k of G are conjugate in
G L, (F) to subgroups Gi C GLy,,(0’;) such that E = F(G1)F(G,)...F(Gy).
In particular, F(G;) # F for some indices i.
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Proof of Theorem B.

If G C GL,(O%) is a group of exponent ¢t and g = Biw; + Bawg +
...+ Bgwy for a basis wy, ...,wg of Of over O, then B; € M,,,(OF), and it
follows from Lemma 1 that the eigenvalues of B; are contained in Of. But
eigenvalues are preserved under conjugation, so the latter claim is also true
for all components G;. We can apply Theorem A to G;,i = 1,..., k. It follows
that G; are conjugate to subgroups G, C GLpy,(O%). Now, Lemma 2 implies
E = F(G1)F(G2)...F(Gg). This completes the proof of Theorem B.

Theorem C. Let E/F be a normal extension of number fields with Galois
group I'. Let G C GL,(E) be an abelian T-stable subgroup of exponent t
generated by g = Bywy + Baws + ... + Bagwg and all matrices g7,y € I', and
let E = F(G). Then G is conjugate in GL,(F) to G C GL,(O%) if and
only if all eigenvalues of matrices B;,i = 1,...,d are contained in O}, where
L= E(G)-

Proof of Theorem C.
Let
Gl *
C7lGC = .
0 Gy
for C € GL,(F) and irreducible components G; C GL,,(E),i =1,...,k. Then

1 *
C1gC = = Biwy + Byws + ...+ Bjwg
0 gk

for B} = C~'B;C. Let us consider F-algebra A generated by all B,i =1, ...,d,
over F. Since A is semisimple, it is completely reducible. It follows that
matrices B are simultaneously conjugate in GL,(F) to the block-diagonal
form. Therefore, G is conjugate in GL,(F) to a direct sum of its irreducible
components G;. We can apply Theorem A to each of them. Theorem B
implies that each G; is conjugate in GLy (F) to G; C GL,,(O%) if and
only if all eigenvalues of matrices Bj,i = 1,...,d are contained in Of , where
L; = F(G;)({). But F(G) = F(G1)F(G3)...F(Gy) by Lemma 2, and so
L = Ly Ly...Lg. This completes the proof of Theorem C.

Remark. Theorems A,B,C remain true for some other Dedekind subrings
R C L. They can also be modified for the rings of integers Og,Of and Of
provided Og and Oy, have Op-basises (the latter is always true for F = Q).

The approach to describe all I-stable matrix groups up to G'L,, (R)-conjugatic
for certain Dedekind rings R C F can be based on either of Theorems A,B,C
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Then af = a;; and A\; = (¢ — Doy for i # 1, and Ay = 1+ (¢ — Dous-
So A = (G —Vaji = (G —Vayjfori # 1, and A = (¢ — Dall +1 =
(¢t — 1)an; + 1. Since any linear relation

d
ky(d = 1)+ ki =0,k € F(G),i=1,2,...,d
=2
implies the linear relation
d
k(A7 1)+ kA =0,k € F(G),i=1,2,...,d
i=2

for all o; € T, this would also imply detW ™! = 0, which is impossible.
Therefore, A\; — 1, Ag, ..., Ay generate the field E({;) overF(({;), and so B; —
14, By, ..., By generate F'((;)-span F({)[B1,-.-, Ba] over F({;). Note that B;
can be expressed as a linear combination of g%¢,i = 1,2, ..., d with coeflicients
in B: B; = E?:l ai;9%7. This can be obtained from the system of matrix
equations

d
9% =) w{’B;,j=1,2,..,d
i=1

if we consider B; as indeterminates. Since G has exponent ¢, F/((;) is a splitting
field for G, the group generated by all g%, 0 € I'. Therefore, the dimension
of E(¢¢)-span E((;)G = E((:) ®F() F(&:)G over E(() is d, and so F((;)-
dimension of F((¢)-span F((:)G is also d.

Let us denote by E’ the image of F((;) under the regular representation
of E(G:)/F(G) over F((:). Then A = E(G)G = E(() ®F,) F(G)G, the
E({:)-span of G, is the Galois E’-algebra in the sense of [4], that is, it is an
associative and commutative separable E’'-algebra having a normal basis. We
can choose idempotents

_ 1
G—1

as a normal basis of A over E' so that ¢; = €7”.

We have F((¢)G = F(G)[< g7, ..., 97¢ >] = F(C)(9~1a)*, ..., (9—1a)??],
and dimp(,)F((;)G = d. As the length of the orbit of M = [my;] = (9 — I4)
under I'-action is d, we can use the coefficients of matrices M7 ,i = 1,2, ...,d to
construct an element § = Zi’ j kijmy;, ki € F((;), which generates a normal
basis of E((¢)/F((:). Therefore, for any given a € E((;) we have a = 3, k0%
for some k; € F(().

Therefore, our choice of eigenvalues implies that F((:)(G) = E((:)-

&;

(gaj - Id))j = 1a2,"')d
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Now, we can apply the regular representation Rp of F((;) over F to
matrices M = [my;]ij,ms; € F((t) in the following way: Rp(M) = [Rp(mij)]i,;-
So, using Rp for all components of matrices B; € M, {F((;)) we can obtain
an abelian subgroup G C GLy, (E),n; = [F({:) : F]d of exponent ¢ which
is '-stable if we identify the isomorphic Galois groups of the extensions E/F
and E(()/F(¢:). We have again dimpFG = dimgEG, E is again the Galois
algebra, and F(G) = E. Now, using the natural embedding of G to GL,(E),n >
ny, we complete the proof of Theorem 2 in the case 1).

2) In virtue of 1) we can consider the case when the intersection Fy =
ENF(({;) # F. We can use the regular representation R of E over F. Let 'y =
{01,0%,...,04} be the set of some extensions of elements I' = {01, 02, ..., 04}
to B(()/F, and let wy = 1, ws,...wq be a basis of E over F. So we can use
our previous notation and go through a similar argument as in the part 1) of
the proof for construction of g = Z?:l B;w; and matrices B; as the regular
representations Ry of eigenvalues

oE(t)
detW; .
- i g =
A= 7 jél Aij¢?, i =1,2,...,d,

in the following way: we consider

o=(t) _
B; = Ro(\s) = Y, R(\;),

=1

where R is the regular representation of E over F. We also have A\’ =
o1 + 1,/\;71' = ay; for j = 2,...,d . Now, if we have any linear relation

between the rows of the matrix [a,-j(gff — 1)];,5, this would imply a linear
relation between its columns, and so the columns of W~ = [ay;] are linearly
dependent, and detW—! = 0 which is a contradiction. So, again we obtain
that Ay — 1, A2, ..., Ag are linearly independent over F, so dimpFG’

= dimpF[B; — Iy, By,...,B4] = dimpEG' = d for G generated by g% ,i =
1,2,...,d. As earlier we can consider the elementwise regular representation
Rg(B;) of matrices B; in the field extension E((:)/E. So we obtain go =
E?:I Rg(B;)w;, and we can take the group G generated by all gg*,i =
1,2,..,d. Since [E(¢:) : F| = [E(&) : E|[E : F] = ¢g(t)d, the integer
n = ¢g(t)d coincides with the one required in the formulation of Theorem 2.
In this way we can construct a I-stable group G that satisfies the conditions
of Theorem 2.

This completes the proof of Theorem 2.
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Proof of Theorem 3.
We can use the proof of Theorem 2.
Let G C GL,(F) be a group given in the formulation of Theorem 3, and let
n be minimal possible. Then we have the following decomposition of E-span
A= EG:
A=gA+eA+...+e,A

for some primitive idempotents £;,...,ex of A. ¢; are conjugate under the
action of the Galois group T' = {ay, ...,04}. For if the sum of 6;7" ,i=12,..,d
isnot I, then I, = e; + e fore; =e7' + ... +&]¢ and e; = I, — €1, s0 e, €2
are fixed by I'; this implies that e;, e are conjugate in GL,(F) to a diagonal
form. Since either of 2 components e;G has rank smaller than n, there is a
group satisfying the conditions of Theorem 3 of smaller than n degree.

Therefore, €; = €°, k = d and the idempotents &,...,£4 form a normal
basis of A. But the rank of a matrix £; is not smaller than ¢g(t). Indeed,
€;G contains an element €;g, for some g € G of order ¢ such that (g;9)" = &,
but (;9)* # &; for k < t. We can find g € G in the following way. Since
I, =€ +... + e for any h € G of order ¢ there is €; such that (g;h)t = g,
but (e;h)* # e; for k < t, and the same property holds true for e;h with
any o € I'. Then using the property of normal basis 5 = £7* we can take
g= ha;"a; .

So, the irreducible component ;G determines a faithful irreducible representatic
of a cyclic group generated by g. But if T : ¢ — GL.(E) is a faithful
irreducible representation of a cyclic group C generated by an element g of
order ¢, its degree r is equal to ¢g(¢t). It follows that the rank of matrices g;
is ¢g(t). So the dimension of A over E is ¢g(t)d.

If G is generated by g7, v € I' and its order is minimal, I'-stability implies
that g has d conjugates under I'-action, and so G an abelian group of type
(t,...,t) and order t™ for some positive integer m < d. This completes the
proof of Theorem 3.
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ON RINGS FOR WHICH EVERY MODULE
WITH (S*) IS EXTENDING

A. Cigdem Ozcan

Abstract

A module M is said to satisfy (S*) if for every submodule N of M
there exists a direct summand K of M such that K < N and Z*(N/K) =
N/K where Z*(M) = {m € M : mR is a small module}. We prove that
if M is an extending module satisfying (S*) and Z*(M) is semisimple
projective then every submodule of M is extending and M is a locally
Artinian serial SI-module. We also characterize H-rings and generalized
uniserial rings with J(R)? = 0 by using the conditions ”every extending
module satisfies (§*)” and ”every module satisfying (S*) is extending”.

1 Preliminaries

Throughout this paper, R will be a ring with identity and all modules will be
unitary right R-modules.

Let M be a module. The injective hull of M is denoted by E(M), the socle
of M by Soc(M), the singular submodule of M by Z(M) and the radical of
M by RadM. J(R) is the Jacobson radical of B. Let N be a submodule of
M (N < M). X N is essential in M, we write N <, M. N is closed in M
provided N has no proper essential extensions in M. If N is a direct summand
in M, we write N <y M.

A module M is called an extending module, or a CS-module, if every
submodule of M is essential in a direct summand, or equivalently, if every
closed submodule of M is a direct summand. A module M is called a continuous
module if it is extending and if every submodule isomorphic to a summand of
M is a summand. A module M is called a quasi-continuous module if it is

Key Words: extending modules, lifting modules, H-rings, generalized uniserial rings.
Mathematical Reviews subject classification: 16L30, 16160, 16199, 16 A35, 16A52.
Received: March, 2001.
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extending and if M; and M, are summands of M such that M; N My = 0 then
M, ® M, is a summand of M. (see [8] or [4])

Let M; and M; be modules. The module M, is essentially M -injective
if every homomorphism a : A — M, where A is a submodule of M; and
Kera <. A, can be extended to a homomorphism § : M; — M, [4]. The
modules M; and M, are relatively (essentially) injective if M; is {essentially)
Mj;-injective, for every 1,5 € {1,2}, i # 5.

Following [21], o[M] denotes the full subcategory of Mod-R whose objects
are submodules of M-generated modules. Let M and N be modules. N is
called M-singular if N 2 L/K for an L € o[M] and K <. L (see [21] or [4]).
Largest M-singular submodule is denoted by Zps(N), and Zpr (V) <Z(N). A
module M is called an SI-module if every M-singular module is M-injective
[4]. These ’SI-modules’ need not be ’SI-modules’ in the sense of Yousif [18].
A ring R is a right SI-ring if every singular (right) R-module is injective. A
ring R is called a right GV-ring if every simple singular (right) R-module is
injective. Clearly Sl-rings are GV-ring.

A module M is called locally Artinian if every finitely generated submodule
of M is Artinian. M is said to be wniserial if its submodules are linearly
ordered by inclusion. M is said to be a serial module if it is expressed as a
direct sum of uniserial modules. A ring R is called right (left) serial if Rp
(resp. gR) is a serial module. When a ring R is both right and left serial, R
is said to be a serial ring. [21]

Let N be a submodule of a module M. N is called small submodule if
whenever N + L = M for some submodule L of M we have L = M, and it is
denoted by N « M. The module M is called a small module if it is a small
submodule of some R-module. M is small if and only if M < E(M) [7]. We
put

Z*(M)={m e M : mR < E(mR)} [6]

Since RadM is the sum of all small submodules in M, RadM < Z*(M).
Z*(M) = M NRadE(M), Z*(N) = NN Z*(M) for a submodule N of M and
Z*(@rM;) = ®1Z*(M;) for any modules M; and any index set I. If o : M —»
K is a homomorphism of modules M and K, then ¢(Z*(M)) < Z*(K) (see
[12]). We call a module M is cosingular if Z*(M) = M. A ring R is called
(right) cosingular if the (right) R-module R is cosingular.

Clearly small modules are cosingular. If R is a right cosingular ring then
every R-module is cosingular [11]. For example, since Z <« E(Z) = Q, every
Z-module is cosingular.

A module M is called lifting (or a (D1)-module) if for every submodule
N of M there is a decomposition M = M; & M, such that M; < N and
NNM, <« M [8]
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In [13] we define the following property for a module M.

(S*) If for every submodule N of M there exists a direct summand K of
M such that K < N and N/K is cosingular.

A ring R satisfies (S*) if the (right) R-module R satisfies (S*).

In Section 2 we give some results about extending module M which satisfies
(8*). We prove that if M is an extending module satisfying (S*) and if Z*(M)
is semisimple projective then every submodule of M is extending and M is
a locally Artinian serial SI-module (Theorem 2.10). In Sections 3 and 4 we
deal with properties of a ring R when every extending module satisfles (S*),
and, every module with (5*) is extending. It is proved that every injective R-
module is lifting if and only if R is right perfect and every extending R-module
satisfies (S*) (Theorem 3.2). It is also proved that R is a generalized uniserial
ring with J(R)? = 0 if and only if R is right perfect and every R-module with
(S*) is extending (Theorem 4.5).

2 Z*(M) is Semisimple Projective

Lifting modules satisfy (S*). But the converse is not true, for example, let R
denote the ring of integers Z. Since Z*(R) = R, R is cosingular and hence
satisfles (S*). But R is not lifting [8, p.56]. Clearly, a module M satisfying
(S*) is lifting if Z*(M) < M.

A ring R is semiperfect if and only if the right (left) R-module R is lifting
[8]. Hence semiperfect rings satisfy (S*). If R is right self-injective, then
7Z*(Rg) =J(R) < R. It follows that right self-injective rings with (S*) are
semiperfect (see also [13, Corollary 4.12]).

In [13] it was proved that a module M satisfies (5*) if and only if for every
submodule N of M, M has a decomposition M = M; ® M, such that M; < N
and N N Ms is cosingular if and only if for every submodule NV of M, N has
a decomposition N = N; @ N such that Ny <4 M and N; is cosingular
[13, Lemma 3.1]. Any submodule of a module M with (S*) satisfies (S*) [13,
Lemma 3.2]. And also it can be shown that if M satisfies (S*) then M/Z*(M)
is semisimple (see [13, Proposition 3.10]).

Lemma 2.1. [13, Corollary 3.6] Let M be a module satisfying (S*). Then
there s a decomposition M = M; & M, such that M, is semisimple with
T(Ml) =0 and Z*(Mg) Se Mg.

Extending modules satisfying (S*) have the following decomposition.
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Proposition 2.2. Let M be an extending module. M satisfies (S*) if and
only if every submodule of M is a direct sum of an extending module and a
cosingular module.

Proof. Suppose that M satisfies (§*). Let N < M. Then N = N; ® N, where
N; <q M and N; is cosingular. It follows that N is extending. Conversely,
suppose that every submodule of M is a direct sum of an extending module
and a cosingular module. Let L be any submodule of M. Then L = L ® L, for
some extending module L; and cosingular module L. Since L, is extending,
there exists a direct summand K of M such that Ly <, K. Then KNL, =0
and L = K @ L,. Hence M satisfies (S*). O

From now on we investigate some injectivity properties of modules M
such that Z*(M) is semisimple projective which we need for the proof of
Theorem 2.10. They will also help us to determine whether the modules
which is a direct sum of a semisimple and an extending module are extending.

Proposition 2.3. Let M be a module with M ) Z*(M) semisimple. Then every
module K with Z*(K) = 0 18 M -injective.

Proof. Let K be a module with Z*(K) = 0. Let Z*(M) := A. Then K is
M /A-injective. Let N < M and ¢ : N — K be a homomorphism. Let
X = Keryp. Note that

(ANN)/(ANX) = (ANN)+ X/X <N/X =2Imp < K

Then Z*((ANN)/(AN X)) = 0. On the other hand, since A is cosingular and
the class of cosingular modules is closed under submodules and homomorphic
images, (AN N)/(AN X) is cosingular. This implies that ANN = AN X.
Define§: (N+A)/A — K, 8(n+ A) = p(n), (n € N). Then 8 is well defined
and a homomorphism. By hypothesis, 8 can be extended to a homomorphism
a: M/A— K. Now define §: M — K by f = ar wheren: M — M/A
is the canonical projection. It is easy to check that 8 extends ¢. Thus K is
M -injective. O

Corollary 2.4. Let M be a module satisfying (S*). Then M is a direct sum
of two relatively tnjective modules.

Proof. By Lemma 2.1, M = M; & M, such that M; is semisimple with
Z*(M;) = 0 and Z*(M;) <, M,. Then M, is M;-injective because M, is
semisimple. Since M, satisfies (S*), My/Z*(M,) is semisimple. Hence by
Proposition 2.3, M; is Ma-injective. O

Proposition 2.5. Let K and M be modules such that Z*(K) is semisimple
projective, M satisfies (S*). Then K is essentially M -injective.



ON RinGs FOR WHICH EVERY MODULE WiTH (S*) Is EXTENDING 89

Proof. Let N < M and a homomorphism f: N — K with Kerf <, N. M
has a decomposition M = M; & M, where M1 < N and N N M, is cosingular.
Then N = My & (NN M,). Let m € M;m = a + b where a € M; and
be M;. Wedefineg: M — K, mw— f(a). Clearly g is well-defined. Let
n € N and n =a+ b where a € M; and b € My. Then g(n) = f(a). Since
f(N N M) <Z*(K) and Z*(K) is semisimple projective,

FINN M) =2 (NNM)/(NNM;nKerf) = (NN M)+ Kerf)/Kerf

is projective. Hence Kerf <4 (NNMy)+Kerf. In addition (NNMy)+Kerf = -
NN (M2 + Kerf), Kerf <, N and Kerf < NN (M, + Kerf) < N. Hence
Kerf <¢ (NNMa)+Kerf. This implies that NNM, < Kerf. Since b € NNMa,
f(b) = 0. Thus f(n) = g(n) for all n € N. f extends to g. O

Note that if R is a right GV-ring then Z*(M) is semisimple projective for
every (right) R-module M [11]. Hence we have the following corollary.

Corollary 2.6. Let R be a right GV-ring and M an R-module which satisfies
(S5*). Then every R-module is essentially M -injective.

Proposition 2.7. Let M = M, & M, where Z* (M) is semisimple projective
and My is cosingular. Then M, is extending if and only if Z*(M) is extending.

Proof. Let M = M; ®& M, where Z*(M;) is semisimple projective and M,
is cosingular. Then Z*(M) = Z*(M;) ® M. Since M, satisfies (5*) and
Z*(Z*(M1)) = Z*(M,) is semisimple projective; by Proposition 2.5 Z*(M;) is
essentially Ms-injective. Also My is Z*{M1)-injective and Z* (M, ) is extending,.
Hence if M, is extending then Z* (M) is extending by [16, Theorem 8]. Conversely
if Z*(M) is extending, M, is extending, because any direct summand of
extending modules is extending [8]. O

Santa-Clara and Smith [15] proved that if R is a right SI-ring then M; @
M, is extending, for every semisimple R-module M, and every extending R-
module M., and they also proved if every singular semisimple R-module is
injective then M; @ M, is extending for every semisimple R-module M, and
every quasi-continuous R-module My. Now we consider when M7 @ M, is
extending for every semisimple R-module M; and every extending R-module
M, over a right GV-ring.

Proposition 2.8. Let M = M1 &M, where M1 is semisimple, M, is extending.
If Z* (M) is projective and My satisfies (S*), then M is extending.

Proof. Since Z*(M,) is semisimple projective and M, satisfies (S*), M is
essentially Ma-injective. Hence by [16, Theorem 8|, M is extending. O
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Corollary 2.9. If R is a right GV-ring, then M = M| ® M, is extending for
every semisimple R-module M, and every extending R-module My with (S*).

Now we prove our theorem.

Theorem 2.10. Let M be an extending module which satisfies (S*). If Z* (M)
is semisimple projective then every submodule of M is extending and M is a
locally Artinian serial SI-module.

Proof. Since M/Z*(M) is semisimple, M /K is semisimple for every essential
submodule K of M. On the other hand Zy (M) N Rad(M) = 0 since Rad(M)
is semisimple projective. Hence by [4, 17.2], M is an SI-module. Let N < M.
Then N = K ®L where K is extending and L is cosingular by Proposition 2.2.
Since Z*(M) is semisimple projective, L is semisimple projective. Hence by
Proposition 2.8, N is extending. Thus every submodule of M is extending.

To show that M is locally Artinian, let F’ be a finitely generated submodule
of M. Since F satisfies (S*), F/Z*(F) is semisimple. Then F/Soc(F) is
semisimple. By [4, 5.15], F has descending chain condition (dcc) on essential
submodules. Since F ig finitely generated extending and dcc on essential
submodules F' is Artinian [4, 18.7]. Hence M is locally Artinian.

Since M is a locally Noetherian extending module, M is a direct sum of
uniform submodules U by [4, 8.3]. We claim that all U are uniserial. Let KX
be any nonzero finitely generated submodule of U. If we prove that K/RadK
is simple then by [21, 55.1], U is uniserial. Let L be a submodule of K such
that RadK is a proper submodule of L. Since K satisfies (S*), there exists a
direct summand K’ of K such that K’ < L and L/K' is cosingular.

If K' =0 then L is cosingular. By hypothesis, L is semisimple projective.
If RadK #.0, since U is uniform we have RadK = L, a contradiction. If
RadK = 0, K is semisimple by [21, 31.2]. This implies that L = K.

If K' #0, K' = K = L since K is uniform. Thus RadK is a maximal
submodule of K. Hence M is a direct sum of uniserial submodules, i.e. M is
a (right) serial module. O

A module P is called M -projective if for any module N with an epimorphism
7 : M — N and homomorphism @ : P — N, there exists a homomorphism
¢’ : P — M such that 78’ = 6 [8]. A module P € o[M] is called projective
in o[M] if it is K-projective for every K € o[M]. The module M is called
hereditary in o[M] (or self-hereditary) if every submodule of M is projective
in o[M]. [4]

Corollary 2.11. Let M be an extending module which satisfies (S*). Assume
that Z* (M) is semisimple projective.

(i) If M is quasi-projective then Zy (M) =0,

(it) If M is projective in o[M] then M is hereditary in o[M].
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Proof. By Theorem 2.10 and [4, 17.3]. O

Corollary 2.12. Let R be a right GV-ring. If M is an extending R-module
which satisfies (5*) then every submodule of M is extending and M is a locally
Artinian serial SI-module.

If we apply Theorem 2.10 to a ring R, we have immediately

Corollary 2.13. Let R be a right extending ring which satisfies (S*). If
Z*(Rg) is semisimple projective then every right ideal of R is extending and
R is o right Artintan right serial right SI-ring with J(R)? = 0.

- Proof. Since J(R) < Z*(Rg), J(R)? =J(R)J(R) <J(J(R)) <J(Z*(RR)) =
0. O

If R is a ring satisfying the conditions of Corollary 2.13, R need not be left
serial:

R C
0 ¢
numbers and the fields of complex numbers, respectively. Then R is a (right
and left) Artinian SI-ring, J(R)? = 0 and R is right extending, right serial
but not left extending or left serial [3, Example 3.1], [2, Examples (b)]. So R
satisfies the conditions of Corollary 2.13 but R is not left serial.

Example 2.14. Let R = where R and C denote the field -of real

On the other hand if M is an extending module which satisfies (S*), every
submodule of M need not be extending (compare Proposition 2.2):

Example 2.15. Let K = Z/pZ & Z [p®Z for any prime p. Let M = E(K).
Then M is extending by [8, Proposition 2.1]. Since M is a Z-module, M =
7Z*(M)(= RadM). Then M satisfies (S*) but Z*(M) is neither semisimple nor
projective, since projective modules have maximal submodules. Also by [4,
p.58], K is not extending.

If M is an extending module with Z*(M) semisimple projective, M does
not satisfy (S*) in general:

Example 2.16. Let V be an infinite dimensional (right) vector spaces over a
field F. Let R =End(VFr), the endomorphism ring of Ve. Then R is regular
right self-injective (see [5, Proposition 2.23]). This implies that R is (rlght)
extending and Z*(Rg) =J(R) = 0 but it does not satisfy (S*).
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3 Every extending module satisfies (S*)

The condition that every extending module is lifting characterized by Oshiro
(see Theorem 4.2). In the light of this condition, in this section, we will
investigate rings which have the condition that every extending module satisfies
(5*). Note that there are extending modules which are not satisfy (S*) (see
Example 2.16).

Lemma 3.1. The following are equivalent for a ring R.

(i) Every R-module satisfies (S5*),

(%) Every extending R-module satisfies (5*),

(11i) Every quasi-injective R-module satisfies (5*),

(iv) Every injective R-module satisfies (S*),

(v) Every R-module is a direct sum of an extending module and a cosingular -
module,

(vi) Every R-module is o direct sum of an injective module and a cosingular
module.

Proof. (i)& (iv) & (vi) were proved in [13, Theorem 4.2]. ()= (ii) = (iii)=
(iv) Clear. (ii)& (v) By Proposition 2.2. O

Artinian serial rings are called a generalized uniserial ring. Oshiro [9]
called a ring R is a right H-ring if every injective (right) R-module is lifting.
He proved that if R is a generalized uniserial ring then it is a right and left
H-ring [9, Theorem 4.5]. Also if R is a quasi-Frobenius (QF-)ring, R is right
and left H-ring [9, Theorem 4.3] .

Theorem 3.2. The following are equivalent for a ring R.

(i) R is a right H-ring,

(1) R is right perfect and every extending R-module satisfies (S*),

(i11) R is right perfect and the injective hull of every semisimple module satisfies
(5*)

(iv) R is right perfect and E((R/J(R))™°) satisfies (S*).

Proof. (i)=(ii) Since R is aright H-ring, R is right perfect and every injective
module satisfies (S*). Hence by Lemma 3.1, (ii) holds.

(it)=> (iii)= (iv) Clear.

(iv)=>(i) Since E((R/J(R))™0) is injective, E((R/J(R))™°) is lifting. So by [17,
Theorem 2.14], R is a right H-ring. O

4 Every module with (S*) is extending

Since every Z-module is cosingular, every Z-module satisfies (S*). It is well-
known that there are Z-modules which are not extending, for example Z /pZ &
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Z/pZ (Example 2.15). So we conclude that every module with (S*) is not
extending in general. Therefore in this part of this work we consider the
condition ”every module with (5*) is extending”. On the other hand this
condition implies that ”every lifting module is extending” which was characterizec
by Oshiro (see Theorem 4.2).

First we investigate more stronger conditions that every module with {S*)
is injective ( or quasi-injective).

Theorem 4.1. The following are equivalent for a ring R.

(i) R/ Z*(RR) is semisimple and every R-module with (S*) is injective.
(i) R is right perfect and every R-module with (S*) is quasi-injective.
(ii3) R is right perfect and every lifting R-module is quasi-injective.
(iv) R is semisimple.

Proof. (iii) < (iv) was proved in [17, Proposition 2.12].

(iv)= (i), (ii) Clear.

(ii)= (iii) Since every lifting module satisfies (5*), it is clear.

(i)= (iv) If (i) holds then every simple R-module is injective, i.e. R is a
right V-ring. Then Z*(Rg) = RN RadE(R) = 0 ([21, 23.1]). Hence R is
semisimple. O

Theorem 4.2. [10, Theorem 2] The following are equivalent for a ring R.
(i) Fuery extending R-module is lifting, .

(11) Every quasi-injective R-module is lifting,

(1i1) Bvery quasi-projective R-module is extending,

(iv) R is right perfect and every lifting R-module is extending,

(v) R is a generalized uniserial ring.

Proposition 4.3. Let R be any ring. If every R-module M with Z*(M) <. M
is extending then every R-module with (S*) is extending.

Proof. Let M be a module satisfying (S*). Then M = M; & M, where
M, is semisimple with Z*(M;) = 0 and Z*(M2) <. M>. By hypothesis, M,
is extending. By the proof of Proposition 2.4, M;’s are relatively injective,
i € {1,2}. Then by [4, Proposition 7.10], M is extending. O

A module M is called semiperfect if every homomorphic image of M has a
projective cover (see [8] or [21]).

Proposition 4.4. Let R be a semiperfect ring such that every R-module with
(S*) is extending. Assume M is a semisimple R-module with projective cover
P. Then P is extending.
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Proof. Let M be a semisimple R-module with the projective cover P. Since
R is semiperfect every simple R-module has a projective cover [8]. So by
(21, 42.4(4)], P is semiperfect. Hence P is lifting by [8, Corollary 4.43]. By
hypothesis P is extending. O

Theorem 4.5. The following statements are equivalent for a Ting R.

(i) R is right perfect and every R-module with (S*) is extending,

(i) R is semiperfect with J(R™) « R™ and every R-module with (S*) is
extending.

(i) R is right perfect and every R-module M with Z*(M) <. M is eztending.
(iv) Every R-module is estending.

(v) Every R-module is lifting.

(vi) R is a generalized uniserial ring with J(R)? = 0.

Proof. (iv)& (v)< (vi) were proved in [17, Proposition 2.13]

(i)= (ii) It is clear. :

()= (i) Since R is semiperfect, R/J(R) is semisimple. By hypothesis, we
have that R™ is the projective cover of (R/J(R))™ = RM/J(R)N =
RM™/J(RM™). So by Proposition 4.4, R®™) is extending. By [4, 11.13], R
is right perfect.

(1)= (iv) If (i) holds then every lifting R-module is extending. By Theorem 4.2,
R is a generalized uniserial ring. Hence R is a right H-ring. By Theorem 3.2
and Lemma 3.1, every R-module satisfies (S§*). Thus every R-module is
extending.

(iv)= (iii) It is clear.

(iii)= (i) By Proposition 4.3. : O

A ring R is called a left Kasch ring if every simple left R-module can be
embedded in gpR. For example, QF-rings are left Kasch rings.

Pardo and Yousif in [14, Theorem 2.2] proved that a ring R is left extending
and right Kasch < R is semiperfect left continuous with Soc(Rg) <.gpR. Also
Yousif in [19, Proposition 1.21] proved that R is right self-injective & R/J(R)
is a regular ring, idempotents lift modulo J(R), (R ® R)g is extending and
J(R) =Z(Rpg).

Theorem 4.6. Assume that Rg satisfies (S*) and every R-module with (S*)
is extending. If R is a left Kasch ring, then R is semiperfect right self-injective.

Before proving Theorem 4.6 we give the following proposition.

Lemma 4.7. [21, 41.14] Let M; and M. be modules and M = M, @ M.
M, is Ma-projective if and only if for every submodule N of M such that
M = N + M,, there exists a submodule N’ of N such that M = N' @& M.
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Proposition 4.8. If o ring R satisfies (S*), then R ® R satisfies (S*).

Proof. Let L < R® R. R = A; & Ay where A; is cosingular. RO R =
A A dR=L+ (A2 ®R)
Agsume RN (L + A2) = 0. LN As < A and A, satisfies (S*). Then
=C1®Cy Cy <LNA,CoNLNAy = LNC, is cosingular. RO R =
A1 ® Ay ® R = (A1 GBOﬂ@(CzEBR) = L+(C2$R). Since A; & C is
Cs @ R-projective [8], there exists L' < L such that R@R=L' & Cy® R by
Lemma 4.7. LN(C2® R) < CoN(L+ R) = LN C, is cosingular. Hence RO R
satisfies (S*).

If RN (L+ Ay) # 0, then R = B; ® By, By < RN (L + As) and that
RN (L+A2)ﬂB2 = BN (L+A2) is cosingular. ROR=A10B; DA DB, =
L+(R€BA2) =L+4+B;+By+A; =L+ (A2 @Bz) Since A; @ B, is Ay @ B,-
projective, then R@® R = L' ® (A; & By) where L' < L. LN (A; ® By) is
cosingular since Bo N (L + Az) and Ap N (L + Bz) are cosingular. It follows
that R @ R satisfies (S*). O

Proof. of Theorem 4.6 Since R is an extending and left Kasch ring, R is
a semiperfect right continuous ring by [14, Theorem 2.2]. Since R is right
continuous, J(R) =Z(Rpg) (see [4, 2.12]). On the other hand since Rp satisfies
(S*), (R & R)g satisfies (S*) by Proposition 4.8. So (R ® R)g is extending.
Hence by [19, Proposition 1.21] R is right self-injective. O

A ring R is called a right PF-ring (pseudo-Frobenius) if it is right self-
injective right Kasch.

Corollary 4.9. Assume that R satisfies (S*) and every R-module with (S*)
is extending. If R is a right and left Kasch ring then R is a right PF-ring.
Example 4.10. Let R = FO ?
over a field F. Then R is an (right and left) extending Artinian serial SI-ring
with J(R)? = 0 which is neither a left nor right Kasch ring, and J(R) #Z(Rg) =
0 (see-[2], [4, 13.6] and [20, Example 4]). Note that by Theorem 4.5, every
R-module is extending; and R is not right self-injective.

be the ring of upper triangular matrices
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should be an equilibrium between:

e Pure mathematics,
o Pure mathematics in Physics, etc. and

e Applicable mathematics.

We should always keep in mind that the applicat’ons of tomorrow are based
on the foundations of today.

There is no room at the Universities for the traveling salesman; he does belong
into the realm of the Polytechnica.

Humboldtian ideals

Let me pause a moment to recall the lives of both Alexander and Wilhelm von
Humboldt and of their ideas.

The brothers Alexander — he lived from 1769 to 1859 — and Wilhelm - he
lived from 1767 to 1835 — von Humboldt pass on to us two biographies which
supplement each other rather than contradicting each other, and although they
diverge temporarily — not only geographically — they sooner or later touch each
other and even unite.

In 1787 the brothers entered the University of Frankfurt an der Oder:
According to his mother’s wish Alexander prepared for a career in government
service, but he soon followed his inclination towards natural sciences. In 1792
he received a mining license from the Mining School of Freiburg. His brother
got his degree in Go&ttingen in philosophy and linguistics.

The milestone in 1796, which marks a turning point — on the basis of the
common origin of being brought up together — was Gottlob Johann Christian
Knuth. After the early death of their father in 1779 Knuth took care of the
financial matters of their mother and after her death in 1796 he executed the
will of their parents:

e Knuth made the family man Wilhelm the landlord of various houses in
Berlin-Tegel,

e the bachelor Alexander he made a rich man, so that he could realize his
boyhood dream of traveling around the world. The fruits of his travels
were so manifold that it took the scientific world decades to catch up on
the vast amount of new knowledge gained by him.
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With the early death of their inother the Humboldt brothers were able to each
realize the dreams they had until then nourished in secret, and the trails of
their lives could develop freely and take their remarkable directions.

In the years 1794-1796 the family of Wilhelm von Humboldt already held close
contact with Friedrich Schiller and his wife. Both brothers were intrigued by
Goethe’s “unitarian thinking” (Ganzheitsdenken); i. e. the whole universe —
including its various inhabitants, humans, animals and plants — form a unity;
they do not consist of separated entitics like birds, plants, etc., instead their
symbiosis influences them mutually. Both brothers integrated this “Ganzheits-
denken” individually in their research:

e Alexander demonstrated this in his studies of nature, in his “world-
painting”, first depicted in 1880 in his considerations of nature —
“Ansichten der Natur” — and later deepened this in his “Kosmos-lectures”
in Berlin in 1827/28.

¢ Wilhelm applied this “Ganzheitsprinzip” —i. e. the idea that the world
forms an entity — in his general and comparing studies of languages.

Both required in science — not only natural science — a careful observation of
the details, which must then be put together — like in a puzzle ~ to form the
global picture.

This is the essence of what one understands — concerning research under the
Humboldtian idea of research; not merely the local view, but the various
detailed local views, which must be put together into a global view.

However — except at the Universities — this scientific attitude and, in particular,
the vast practically unlimited number of objects of research it would require,
soon became untimely. The spirit of “positivistic” science, i. e., the source
of all human knowledge is the “given”, ignores everything that does not have
its origin in sensual observations; i. e. it ignores things such as regularities,
various categories, structures, etc. This spirit, which now took over, ignored
Humboldt’s ideology and later led the brothers into isolation.

The ideology of the Humboldt brothers’ “Ganzheitsdenken”, the consideration
of our world as an entity, has recently experienced a strong reactivation inside
the Universities as well as outside them — even in politics — with view to
numerous problems such as the climate, the rain forests, pollution, etc.

In 1799 Alexander von Humboldt started, after obtaining the permission by
King Charles IV of Spain, a 5-year trip through South America and Mexico,
investigating



104 K. W. ROGGENKAMP

the botany, the zoology,
the vegetation and the geology

of these countries.

Back home he published his findings combined with a global theory about the
relations between vegetation, wildlife and landscape formations in three books

e The equinoctial plants (1805),

e Ideas for a Geography of plants and a Nature Picture of the Tropics
(1805) and

o Views of Nature with Scientific Commentaries (1808).
Johann Wolfgang von Goethe wrote about Alexander von Humboldt:

“Alexander von Humboldt has no equal in
knowledge and vital learning.

Whatever the subject of discussion,

he is completely at home in it,

and gems of wisdom are pouring forth.

He is like a fountain with a vast number of outlets.”

Humboldt’s ambition was

“TQ SURVEY NATURE AS A WHOLE, AND TO PRODUCE EVIDENCE OF THE
INTERPLAY OF NATURAL FORCES”.

If we talk about Humboldt’s ideas and ideals on research we mean: a broad
and not narrow-minded knowledge about the sciences. In our days, however,
we should be more modest due to the immense increase in knowledge. For
mathematicians we mean:

e a broad knowledge in the realm of mathematics;
in order to be able to develop a general theory for the problems,
which may come from outside mathematics (applied mathematics) or
from inside mathematics,

e to see connections between various phenomena (inside and/or outside)
of mathematics,

¢ to find common patterns in various different problems in applications or
inside mathematics.



THE HUMBOLDTIAN IDEALS AND TODAY’S UNIVERSITIES 105

In this connection let me quote Lagrange

“As long as algebra and geometry proceeded along separate paths,
their advance was slow and their applications limited.

But when these sciences joined company, they drew from each
other fresh vitality and

hence-forward marched on at a rapid pace towards perfection.”

The same applies to other fields of mathematics and their applications.

After having returned from his journeys to South America, Alexander von

Humboldt lectured about his observations and theories at Scientific Institutions

in Paris and Berlin.

If we talk about Humboldt’s ideas and ideals of teaching, we mean a symbiosis

between research and teaching — here with teaching I do no mean undergraduate
courses — these can be taught much better by teaching assistants ~ I mean

courses for eager students: '

¢ teaching the results of research to the graduate students; this has a two-
fold merit:

—~ it shows the students what good mathematical research is;

— it forces the teacher to cut the research into small and lucid pieces,
so that the students can grasp the idea and the arguments;
this often also gives the Professor * new insight,

e pointing out the connections between the various areas of mathematics;

¢ streamlining the course, by concentrating on the essentials both in the
selection of the topics and in the structure of the proofs.

These things, however, can only be achieved properly by teachers with a strong
backbone with respect to research.

At this place I would like — based on my own experience — to point out that
a teacher in his class is the better, the more he is challenged by the material;
so I would like to require that

good researchers teach demanding courses which challenge them,
the other courses could be taught by
teaching assistants or special teachers,
who are not required to do research,
but who are engaged in didactics, i. e. teaching.

*Let me stress that with the word “Professor” T do identify a classical Professor at a
University — less a teacher at a Polytechnicum or a College
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Let me summarize “HUMBOLDTIAN RESEARCH AND TEACHING:

e We do need a broad knowledge in our field to see the connections; do
not be narrow minded; always keep the “ENTITY” in mind.

¢ Try to build a theory on the “observations” and “examples”; always ask
“why” ?

o Teaching (advanced courses) and research suould form a “unity”; they
are intimately related.

For an outstanding mind like Humboldt’s it was possible to keep track of and
understand the various sciences of those days. This is impossible today, so we
have to modify the postulate to:

Postulate 0.2. e Do not be narrow-minded,

e look around you and see the connections.

Teaching at Universities

Let us recall that the Latin word “Professor” means “public teacher”, so in
its Latin origin it has nothing to do with research. The modern usage of the
word “Professor” is synonymous to

e academic teacher;

e scholar, scientific investigator.

Let us briefly look back at the Universities in Humboldt’s time:

e At that time there were only few and engaged students — something that
is missing to a large extent today.

e The few textbooks which were available were far behind the present state
of research.

o The Professor in those days would work interactively with the students.
He would present the new results to the students in reformulated ways,
so that it would be suitable for the mental capacity of the students. The
dialogue with the students would often bring new light to some aspects
of the topic under consideration.
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There was an intimate interaction between “teaching” and “research”. Today,
at the “mass Universities”, the above hypotheses are non longer valid:

o We have too many students, who — to a large part — are not engaged
in science; many of them go to the University because they expect to
get a better job, to have more respect in society or to earn more money.
Often they want to get their degree (Diploma) with a minimum amount
of work. They do not attend the lectures to understand to subject, but
only in order to be able to pass the examination with the least amount
of work.

I should stress that there are always exceptions — but not so many.

e The material taught in the first semesters (undergraduate studies) is
available in good textbooks, written — to some extent — by excellent
“teachers”.

¢ So there is no need in the undergraduate courses for scientifically highly
qualified teachers. It would be a loss of time and energy for the excellent
scholar to have him teach to disinterested undergraduate students.

e The scholars should mainly teach courses on their special field of research
where they can unfold their knowledge and talent. They should also
teach the undergraduate courses for a few selected excellent and engaged
students.

So let us analyze the two levels of University teaching more closely:
Undergraduate Teaching

This includes the elementary undergraduate courses like “calculus” and “linear
algebra”. It also includes the “mathematics courses” for other faculties such
as economics, engineering, etc.

The requirements of the teachers here are more on the side of DIDACTICS
than on HIGH LEVEL RESEARCH. They should in general not be given by
full Professors, who have obtained their position mainly because of their
outstanding scientific research. '

Let me pause to talk about “Universities” in Germany. Many of those institu-
tions which call themselves “Universities” nowadays used to be Polytechnica;
in the course of our “academic revolution”, which started around 1967, they
all became Universities. The Polytechnica wanted to be called “Universities”,
since this name carries the flavor of more importance. So they were named
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“Universities”, but without changing their character as Polytechnica. In these
Polytechnical Universities, the engineers still dominate all important commi-
ttees. For example, the “mathematics Faculty” has to give each year 4 different
courses of “calculus for engineers”. Until recently the engineering faculties did
insigt on these courses being taught by “full Professors” from the mathematics
faculty. The only point I can see in such a request is that it makes the
engineering faculties feel more important when these elementary mathematics
courses are taught by full Professors.

I myself feel completely over-qualified, teaching elementary calculus to a class
of 300 — 500 students the majority of whom are not really interested in learning
mathematics. You hear 300 pencils drop on the table when the word “proof”
is used — but who only want to know the “rules” according to which they can
solve routine problems and pass the examinations.

Teaching such courses cannot be the duty of a full Professor who is actively
and successfully involved in mainstream mathematical research and who leads
his disciples to becoming good mathematicians.

To teach these courses we have to have people with a high level of didactical
talent and a solid knowledge of elementary mathematics — i. e. mathematics
taught in undergraduate courses. They should like mathematics and they
should be able to motivate the students and communicate some of the appeal
of mathematics to the students.

Undergraduate mathematics is LEARNING — and I stress “learning” — the
elementary techniques of mathematics. One can compare the learning and
understanding of such elementary mathematics with learning the techniques
of playing the piano: You have to practice playing the scales. For this you do
not need Arthur Rubinstein as a teacher. Here the teacher has to be able to
motivate you and he must be a master of these technical skills.

Here comes another postulate

Postulate 0.3. For undergraduate teaching we need people with didactical
talent who can motivate the students to master elementary mathematics. They
must be skillful artists in this “routine” mathematics.

These parts of mathematics are surely enough for teaching in

e Colleges,
e Pedagogical High Schools,
e Polytechnica and

e undergraduate studies.
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Let me ask the PROVOCATIVE QUESTION:

How many students really do need more mathematics?
Graduate Teaching

Let us assume that the students have successfully passed the undergraduate
mathematical studies, i. e. they know the elementary skills and basic facts of
mathematics in, say,

Analysis, Algebra, Geometry, Topology,
Partial Differential equations, Numerical mathematics,
and last but not least with a
mathematical Computer system such as “Mathematica” or “Maple”.

The graduate teaching should assume that these foundations are known and
present with the students — this is often wishful thinking at German Universities.

The teaching of more skills and more techniques — no matter of how sophisticated
they are does not belong to the graduate courses at a University. These are
the main topics at “Polytechnica”, and “Colleges”, whose primary goals is to
prepare the students to a special occupation; so they need to have high skills
in the direct applications of mathematics in mind.

The graduate teaching of mathematics at Universities should have the following
main goals, which I formulate as

Postulate 0.4. The goals of graduate teaching are:

e To see connections and get a feeling of mathematics, be it in pure or
applicable mathematics.

e They should learn the general theories necessary to understand these
connections.

e They should be trained to apply what they have learned in a field A4 to
problems in a field B.

¢ They should be trained to be creative at solving problems.

e They should learn to develop a theory.

The teaching of such courses and the guidance to be given to the students in
order to reach these goals require an excellent scholar, who can also inspire in
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the students his love and enthusiasm for mathematics. It cannot be done by
teachers who do not have a good insight into and overview of mathematics,
and who have not done important research.

Summarizing we get yet another

Postulate 0.5. At the Universities we should have two types of teachers:

* The one who teaches the undergraduate anc elementary graduate course
and whose strength is didactics and the abicty to motivate students to
work hard,

e The Professor in the classical sense who does both important research
and leads the students to the frontiers of research and presents them
with the interplay of various fields and aspects of mathematics.

If one agrees with this, the image of a Professor has to be modified both in
public and in the minds of the politicians.

It is en vogue — at least in Germany — to consider Professors as being disinteres-
ted in teaching the students and some of them even being lazy — this latter
statement was formulated in an interview by the chairman of the assembly of
all rectors of German Universities (HRK). These politicians want the professors
to be the slaves of the students:

the courses — please, they have to be taught in such a way as to make the
students happy — a joke every 5 minutes, not demanding courses and easy
examinations.

There is a tendency in Germany of introducing student evaluation and making
the budget of the faculty dependent of the results. Student evaluation is not
bad eo ipso, but it has to be done with great care:

Can a student really judge at the end of a course whether the teacher was
successful, or can this only be done in retrospect, after one has an overview?
How about asking after 5 years in praxis —i. e. in a job — the most successful
businessmen what they think about their University teachers now.

Maybe the politicians who favor this sort of evaluation will next ask the
children at the age between 10 and 16 every year what they think about the
education by their parents. The outcome of this evaluation by the children
will then determine the amount of support for the children (Kindergeld) the
parents get from the government. What a generation of people will such a
policy generate!

When I look back at my school days and try to evaluate my teachers, I think
that I have learned most — not only concerning the subject but also concerning
life — from those teachers whom as students we somehow disliked because they
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were stern, austere and tough in their requirements.
I think that a similar phenomenon occurs with our students.

With my students I have made the following empirical observation:

o The number of failing students in the first 4 semesters is almost the same
whether you give a demanding course or whether you make it very easy
for the students.

¢ In the student evaluation there is a strong correlation between the ques-
tions:

— Did the Professor go too fast and did he explain things properly?
and

— How much time did you spend trying to understand the lectures
and doing the exercises?

I personally do not believe in student evaluations, I believe in what my students
achieve in life.

Teaching Oriented towards Practice

We hear more and more often the request from the politicians and also from
some Rectors and Professors of Universities that

THE TEACHING AT THE UNIVERSITIES SHOULD BE
MORE ORIENTED TOWARDS PRACTICE ;
this should not be confused with oriented towards Applications.

For brevity 1 shall say “practice oriented” to mean “oriented towards very
special problems which arise in prazis”.

The above request is a nonsense:

e Already the word “universitas = the totality, the whole” is a contradiction
to “practice oriented”;
for this kind of teaching we have Colleges and Polytechnica (Fachhoch-
schulen).

o With “practice oriented” teaching and research we are doing “the work
for the industry.
By paying the money for an Assistant, who does the research for an
industry project, the industry saves the multi-fold amount of money.
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The assistant works for 4 years on a research project the industry needs
for their production. The professor is given a new computer and some
money, which he can use for his work. One should think about the
amount of money the industry saves this way, the expenses being covered
by the taxpayer.

This surely cannot be the purpose of teaching and research at a University.

o “Praxis oriented” teaching and research deals with the techniques which
are used today; but the life of working me:. in industry lasts 35 years,
where new techniques are developed; these new techniques must be
learned, understood and applied.

e So, what we have to teach our students is

— how to learn by themselves and to digest inwardly what they have
learned;

— we have to teach them the foundations and the essentials of applica-
tions;

— we have to teach them the foundations of (pure) mathematics in
order to make them flexible, to teach them to work on a hard
theoretical problem.

The flexibility of the mind and the potential of reacting flexibly is extremely
important in our rapidly changing society, when people are laid off and have
to be re-educated for another occupation. An open mind for flexibility is not
promoted by praxis oriented teaching, but rather by intensive occupation with
theoretical mathematics, both in the pure and applied sector of mathematics.

For the relation between applied and pure mathematics, we should follow Felix
Klein:

“...We do not want that the pendulum,

which in former decades

may have inclined too much towards the abstract side,
should now swing to the other extremes;

we would rather pursue the middle course.”

So I require that
e “Praxis oriented” teaching and research — i. e. oriented towards very

gpecial problems which arise in praxis — should be banned form the
Universities,
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¢ it should be obligatory to learn the fundamental areas of pure mathematics
(algebra, analysis and topology),

e the areas of applied mathematics to be taught should concentrate on
general principles and techniques, with special applications as exercises,

e the students have to be taught to learn rigorously new and nontrivial
theories — both in pure and applied mathematics.

In public mathematics is often identified with helping to “solve very special
problems that arise in praxis”. This however is only a negligible part of
mathematics. We should thus also promote — in public and as propaganda
— another very important aspect of mathematics, the study of the abstract
theories of applied and pure mathematics, which sharpens the logical thinking
and hence is important for everybody.

This aspect of mathematics has been held in high respect over the centuries
by several outstanding people: :

e Plato:

“It would be proper then to lay down laws for this branch of
science (mathematics) and

persuade those about to engage in the most important matters
of state

to apply themselves to computation, and study it,

not in the common vulgar fashion ... for the sake of buying
and selling

but for the reason that the soul may acquire the facility of
turning itself ...

to truth and real being.”

e Immanuel Kant:

“The instruction of children should aim gradually to combine
“knowledge and doing’ (Wissen und Kénnen).

Among all sciences, mathematics seems to be the only one of
a kind,

to satisfy this aim most completely.”

e Oliver Cromwell

“T would have my son mind and understand
business, read a little history, study the mathematics and

cosmography;
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these are good, with subordination to the things of God ...
These make fit for public services, for which men was born.”

In the public picture of mathematics— outside mathematics — and in the
thinking of the Professors (in mathematics) these aspects should again gain
more weight in our time.

The administrative duties of Professors

The so-called DEMOCRATIZATION of the Universities has led to the crippling
reign of the committees, which take up a lot of time that could otherwise be
used for research and teaching.

The influence of these committees and the “burocrats” does not only not
promote outstanding achievements, but, which is worse, it hampers them.

In Germany it is for example possible — and it has indeed happened  — that a
chancellor (the supervisor of the “non-academic” staff) in a University misuses
his powers and bends the law ! to harm research units. Such an interference
of non-academics staff into academic matters opens the door to regulation
of research and a classification of the academic staff into “personae gratae”
and “personae non gratae”, a situation Germany has experienced with pain
some 65 years ago. Part of the censorship which existed then apparently
still exists in the mind of the Rektor Fritsch from the former “Technische
Hochschule Stuttgart” University, who forced the dean of Mathematics -
without consulting me — to close my University-homepage in March 2001; the
reason was that I had put my letter of resignation to the minister of science
in Baden-Wiirttemberg $, which Rektor Fritsch apparently did not like, into
my homepage. What an act of democracy!

This reign of the administration has created the “committee Professor”, who
is a member of almost every committee, teaches elementary courses and does
a little bit of weak research.

But this is the professor our politicians seem to like and whom they promote:

o Since he is weak in research, he does not have a strong scientific backbone.

o Since he is a committee Professor he needs to be elected, so he does not
have strong views, he voices the opinion of the “mediocre majority”.

1t was done by the chancellor Schwarze of the University of Stuttgart in 1997 ff.

}Here we want to note, that we do not use "bending of the law” as terminus rechnicus
in the German sense of ”Gesetzesbeugung”. We-as a mathematician without knowledge in
law—use it as a translation of the German expression ”»Umgehung von Vorschriften”.

§The letter can be found on my private Web-site: “http://www.roggenkampmath.de”.
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e Since he most likely has political ambitions, his mind is open to the
opinions of the ministers and superior political administrators and not
so much to scientific arguments.

Such a “committee Professor” wants to make his University attractive by
achieving the following:

e The majority of students should finish their studies in a relatively short
time. Since the quality of the average student entering the Universities
has gone down continuously — some politicians want to raise the number
of people with a higher education ~ this goal can only be achieved if the
level of the courses and the academic requirements of the examinations
is lowered more and more.

¢ The student evaluations of the teaching quality of their professors should
be most favorable. This implies that the professor leaves out the solid
foundations in his lectures and makes a more or less intelligent joke every
five minutes.

¢ In order to raise the teaching quality, the faculties will get less money if
the student evaluation of the teaching of their professors is poor.

e The students should also be attracted by cheap housing nearby, close
skiing possibilities, good sporting facilities, etc.

e The tuition fee and other fees should be very low.

This is not a utopia, but reality at some places in Germany.

Such a “committee Professor” does not care about the classical measurements
of the quality of a University such as high international ranking and reputation
of the Professors in research and teaching. He does not care about the status
the former students achieve in their life.

Though the technical universities have changed their name, they still remain
" Technische Hochschulen”. The prime example has given the rector Prof. Dr.
Pritschow from the University of Stuttgart in an article in the ”Béblinger
Kreiszeitung” from April 12th 2000 where he talks about the burden of being
a rector. "The one who must be rector for 6 years [before it was only 4 years]
has to say good-bye to research. What may be possible with Anglists and
representatives of soft fields is impossible in the technical fields.” What an
arrogance and ignorance this rector shows by naming Anglistics and the other
humanities soft fields.

Why do students go to Universities like Harvard, MIT, Oxford, Cambridge,
Gottingen or Bonn? Surely not for the above-mentioned reasons.
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The next postulate applies mainly to the Universities, it only partly applies
to Polytechnica and it does not apply at all to Colleges.

Postulate 0.6. WE HAVE TO MAKE OUR UNIVERSITIES ATTRACTIVE BY
THE INTERNATIONAL SCIENTIFIC REPUTATION OF THE PROFESSORS, WHO
DO THE TEACHING OF THE HIGH-LEVEL COURSES.

WE HAVE TO MAKE IT CLEAR TO OUR POLITICIANS THAT THESE ARE THE
QUALITIES WHICH RAISE THE REPUTATION OF A UNIVERSITY AND CONSE-
QUENTLY MAKE IT ATTRACTIVE.

WE ALSO HAVE TO POINT OUT TO THE POLITICIANS THE IMPORTANCE OF
MATHEMATICS FOR THE GENERAL EDUCATION OF THE MIND.

Let me narrate a real-life story about politics and politicians:

There was a small conservative state. After the election the positions of the
ministers had to be filled. As is usual in politics the choice does not only
depend on the qualification for this job — most of our ministers are “universal”
— but on the merits such a candidate has accumulated by his work for the
reigning party. The situation was not different in our small state. There was
an assistant at a certain University, who had been an assistant for decades
without having obtained a Ph. D. yet; he was, so to speak, a “lifetime”
agsistant — a slave to the full Professor on whom he depended. However, this
assistant had been very active in the now ruling party. Since he had been in
academics — the position of an assistant is the lowest academic position at our
Universities — the party made this agsistant the Minister for “Research” and as
such he became the boss of all University Professors in our little state. Let me
repeat: This state now has a Minister for “Research” who did not get a Ph.
D. during his elongated work as an assistant at his University and who had
been subordinate to Professors all his life; now he is their boss — not because
of scientific excellence but because of his “party work”.

Let me point out what kind of policy we are consequently having in this state;
a policy which is also somehow supported by the public opinion:

e Teaching should be the main occupation of Professors.

e The Professors should be present several days a week in order to be
available for the students — even during the vacation. I myself was
never able to prove any result in my office in the University, since there
something or somebody always distracted me. I myself have worked at
home all my life.

e The salary will depend on the success in teaching — whatever “success
in teaching” is.
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o The Professors should do whatever is possible — except raising the scholar-
ly quality — in order to attract more students, in particular foreign
students.

There are recently tendencies of paying the professors according to their
achievements in research and teaching. In an interview in the Stuttgarter
Zeitung from April 12th 2000, the rector of the University of Stuttgart
Prof. Dr. G. Pritschow had all the answers: [according to which criteria
this additional salary should be given he answered:] ”in research this
is simple. Here the Professor can be judged according to his additional
achievements in getting sponsored.” [So next time we see our Professors
in the lectures wearing T-shirts with ”drink coca-cola” printed on them.)
Asked further on by the interviewer then the bel-arts would be handi-
capped compared to the engineers, Pritschow answers: ”Yes, possibly.
However the professors in literature could engage in finding sponsors”...
[could you imagine Goethe wearing a T-shirt with the imprimé ”support
Faust” and going from door to door]. Also for judging the achievements
in teaching, the rector had good suggestions: "In early times this was
easy. Then the students had to pay ”Horgelder” [it must be Horergelder].
[This meant that students in order to attend the lectures of a professor
had to pay him a certain fee]. ”On this the professors did live” [this
is only partly correct]... Today the remains of this are the examination
fees [in undergraduate courses with an examination the students have to
pay a certain fee for the examination of which a certain amount is given
to the profegsor. Old fashioned professors do give this money to their
assistants who have done the actual grading work]. With this [the fees
for the examination] the professor is payed according to his achievement.
This means that the best teacher will be the one who teaches the low
level and little demanding courses like ”Mathematics for engineering”
with some hundred students. Because then he would get a lot of fees for
the examinations.

I hope this whole interview was not meant seriously and is an utopia.
What I did not hear from this minister were statements such as:

In order to cope with the requirements of the future as an
industrialized nation
we have to support high quality research
and demanding teaching.

This is a dangerous and very shortsighted policy.
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In Germany (February 2000), following an idea from the USA, the politicians
had the idea of importing computer specialists from Asian countries in order
to supply the industry with highly qualified specialists. In my opinion this
shows that the University education at some German Universities is not — like
the ones in Asia — up to the standards required by the Industry. This cannot
be changed by brain importation — it has to be changed at the roots, the
University education.

Reminiscences About Pure vs Applied Mathematics

In “A Mathematician’s Apology” (Cambridge Univ. Press 1940), G. H. Hardy
(1877 — 1947) writes:

“Very little of mathematics is useful practically and ...

that little is comparatively dull ...

The “real” mathematics of the “real” mathematician,

the mathematics of Fermat, Euler, Gauss and Riemann is almost
wholly useless. ...

We have concluded that the trivial mathematics is, on the whole,
useful

and that the “real” mathematics, on the whole, is not.”

He explains what he means by writing:

“There is the real mathematics of the real mathematicians, and
there is what I will call the ‘“trivial’ mathematics, for want of a
better word.”

As can be seen here, Hardy gives a black and white picture of mathematics.
He indicates what he means by “trivial” mathematics.

“... It is undeniable that a good deal of elementary mathematics —
and I use the word ‘elementary’ in the sense in which professional
mathematicians use it, in which it includes, for example, a fair
working knowledge of the differential and integral calculus — has
considerable practical utility. ...

‘But our general conclusion must be that such mathematics is
useful as is wanted by a superior engineer or a moderate physicist;
and that is roughly the same thing as to say, such mathematics
has no particular esthetic merit.”
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Then he continues, rightfully so,
“These parts of mathematics are, on the whole, rather dull”.

On the other hand, Hardy also sees depth in some parts of applied mathematics,
as becomes clear from the following quotation:

“If the theory of numbers could be employed for any practical and
obviously honorable purpose, ... then surely neither Gauss nor
any other mathematician would have been so foolish as to decry
or regret such applications.”

which is to say: he sees the possibility of important results in applied mathe-
matics, as was later shown to be the case. Further on he writes:

“The geometer offers to the physicist a whole set of maps from
which to choose. One map, perhaps, will fit the facts better than
others, and then the geometry which provides that particular map
will be the geometry most important for applied mathematics. I
may add that even a pure mathematician may find his appreciation
of this geometry quickened, since there is no mathematician so pure
that he feels no interest at all in the physical world; ...”

Here Hardy actually describes what happened later on with Einstein and
Riemann’s non-Euclidian differential geometry. The final quote really shows
that Hardy means good and bad mathematics and that he definitely foresees
important applications of pure mathematics:

“One rather curious conclusion emerges, that pure mathematics is

on the whole distinctly more useful than applied. A pure mathematician
seems to have the advantage on the practical as well as on the
esthetic side. For what is useful above all is technique, and mathematical
technique is taught mainly through pure mathematics.”

Hardy would include, though — in order to force external reality into his model
— theoretical physics, which I have labeled “Mathophysical Art” into his canon
of “real” mathematics. He writes

“I count Maxwell and Einstein, Eddington and Dirac among “real”
mathematicians.

The great modern achievements of applied mathematics have been
in relativity and quantum mechanics,
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and these subjects are, at present at any rate, almost as “useless”
as the theory of numbers.”

This was in 1940. Things have changed tremendously over the last 50 years.
In view of the present development, Henri Poincaré (1854-1912) was much
more far-sighted and realistic than Hardy:

“The scientist does not study nature because it is useful;

he studies it because he delights in it, and h¢ delights in it because
it is beautiful

If nature were not beautiful, it would not be worth knowing,

and if nature were not worth knowing, then life would not be worth
living.”

I think here Poincaré expresses what I understand as a good University Profe-
8SOT: )

He has to get these ideals of Poincaré down to pass them on to his students.

But this is only possible if the Professor is surrounded by eager students whose
horizon is wider than just passing the next examination.

Although I am with my whole heart a “pure mathematician” I cannot and I
do not want to let Hardy’s point of view stand as my view.

From the time of Plato’s academy through the middle ages and into the rise
of the post-medieval Universities, mathematics had always been central: The
classical scholastic curriculum included

e trivium: logic, grammar and rhetoric the more advanced

¢ quadrivium: geometry, astronomy, arithmetic and music (harmonic
relationships)

Here mathematics would serve two purposes, which I think should also be
considered to be important today:

e The study of mathematics sharpens the logical thinking and is thus useful
in everyday life.

e The study of mathematics is necessary for solving problems in everyday
life.

In the late nineteenth century the abstract approach, already held in high
esteem by the classical (Greek) mathematicians,was being applied again with
more enthusiasm, and new standards of rigor were emerging:
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e The algebraic approach was applied to geometry and topology,

¢ analytic function theory was in full bloom.

In many areas mathematics was running so far ahead of applications that it was
widely assumed that most of these fields would never have any (application).
This was in particular true for certain classical areas such as number theory
and algebra.

In retrospect — and this is very important in our approach to the curriculum
in Universities — the best mathematics consistently found very important
applications, but often not until many decades later.

Let us list a few T:

» Riemann’s “clearly inapplicable” non-Euclidian Differential Geometry
from the 1850’s became the basis of Einstein’s General theory of Relativi-
ty some 60 years later, which is now in the space age a vital part of
concrete calculations.

e The purely abstract field of group theory and representation theory from
1850 ~ 1900 became a vital part of particle physics and coding theory in
1930/40.

e Finite fields, invented by Evariste Galois around 1800, which were consi-
dered to be the purest of pure mathematics, have become, starting in
1950, the basis for the design of error correcting codes.

These are now indispensable in everything from

— computer data storage to
— deep space communication to preserve fidelity to
- recording music on Compact disks.

e George Boole’s nineteenth-century invention of formal logic has become
the basis for electronic switching theory and for digital computer design.

¢ Number theory has become important in cryptography (large prime
numbers and prime factorization).

¢ Topology and in particular knot theory — which would seem to be particu-
larly useless — form extremely important applications in physics (quantum
mechanics and super-string theory) and in molecular biology (the knotted
structures of nucleic acids and proteins).

YThese are taken from [Golomb].



122 K. W. ROGGENKAMP

e Graph theory —the trivial one-dimensional topology — has blossomed into
a major discipline where the boundary between “pure” and “applied” (e.
g. transportation problems) is virtually invisible.

There are plenty more such examples where results from the “purest” areas of
mathematics have found very important applications.

In this connection I would like to quote from Golomb, S. W. who is both a
pure and an applied mathematician , “Mathemaics after 40 years of space
age”, [Golomb]:

“It may still be necessary for some Mathematics Departments to
defend themselves from being turned into short-term providers
of assistance to other disciplines, which are consumers rather
than producers of mathematics; but the basic principle that
good ‘pure’ mathematics is almost certain to have very important
applications eventually is now widely recognized.

For most mathematicians today, the distinction that matters is
between ‘good mathematics’ and ‘bad mathematics’, not between
‘pure’ and ‘applied’ mathematics.”

So we have in some sense come back to Hardy’s distinction between “real”
mathematics and “trivial” mathematics. Except that it is not true that “real”
mathematics is useless and that “useful” mathematics is “trivial”.

Postulate 0.7. Both in our courses at the Universities and in our research
we have to make sure that we are working with “good” mathematics both in
“pure” and “applicable” mathematics.

Epilogue

It seems that pure mathematics is currently in a similar situation as in the
middle ages, when practicing pure mathematics was not appropriate from the
religious point of view. This has not always been so. Let me point out the
profound role mathematics has played in the eyes of Goethe, by quoting from
GoETHE's “Wilhelm Meisters Wanderjahre” (1829), “Betrachtungen im Sinne
der Wanderer”:

“Just like dialectics, mathematics is an agent of the inner higher intellect; in
its execution it is an art.”

Mathematics, both pure and applicable — not the applications — in its rigidity
and logic should again become — as it has been in times and countries of high



THE HUMBOLDTIAN IDEALS AND TODAY’S UNIVERSITIES 123

civilization — a vital part of education, both in school and at the Universities. It
should be a matter of prestige for a state to promote this kind of mathematics.
Engaged teachers should work hard in the Schools and in the Universities to
raise the reputation of mathematics in the mind of the politicians and the
people. In this spirit Nietzsche wrote in “Frhliche Wissenschaft”:

“We want to carry the rigidity and harmony of mathematics into all sciences,
as much as possidle;

Not in the belief that we understand things that way, but in order to recognize
our human relation to the things.

mathematics is the “ultimatima ratio” of the knowledge of human nature” .

We must come back to Universities where outstanding achievements in research
are recognized as what they are: results achieved by outstanding personalities.
The University Professors are the elite of each country; the future prosperity
on the country depends on them. On their education-of the youth is built
the new generation of leading administrators, managers, engineers, medical
doctors etc.

No country — not even Germany — can keep an outstanding position compared
to the other countries if it does not promote demanding research and pretentious
teaching.

We, the Professors, have to fight for this, since we cannot get any help from
the politicians — they only think from one election to the next; we cannot get
help from managers in industry — they think along very selfish lines.

So we are left alone, but united we can be strong and can use our influence to
make the Universities better — in the sense of Humboldt.
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DERIVED ORDERS AND
AUSLANDER-REITEN QUIVERS

Wolfgang Rump

Let R be a complete discrete valuation domain with quotient field K,
and let A be an R-order (see §1) in a finite dimensional K-algebra A. For a
hereditary embedding v : Py — I of a projective A-lattice Py into an injective
A-lattice Iy (see [10, 11] or §1 below), a derived order §,A in My(A) can be
defined. There is a functor &, : A-lat — §,A-lat which yields an equivalence
of quotient categories

b, : Alat/[v™'] ™~ §,A-lat/[B],

where the ideal [v~1] is generated by finitely many indecomposables, and B is a
bijective 0, A-lattice. We show in §1 that any such functor 8, is a composition
of functors 8, given by hereditary embeddings v : P < I such that I/P is
uniserial. Then we have a surjective map

p: ind(A-lat) —» ind(6,A-lat) (0)

between the isomorphism classes of indecomposable A- and 8, A-lattices, featurir
a “discrete blowing down”: Unless P = I, there is a single exceptional fiber
p~1(B) of cardinality > 1, namely, the finite chain of A-lattices between P
and I. In [10] we have shown that Zavadskij’s differentiation algorithms
for partially ordered sets [15] and for tiled orders [16], as well as Simson’s
generalization to vector space categories [12, 13] can be obtained as special
cases of (0).

In this paper we analyse the relationship between the Auslander-Reiten
quivers A and s, A, provided that the K-algebra A = KA is semisimple.

Key Words: Order,Auslander-Reiten quiver, Differentiation.
Mathematical Reviews subject classification: Primary: 16G30, 16G70. Secondary:

18E05.
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(For representations of posets, cf. [14].) To this end, we make use of Iyama’s
concept of a r-category [6]. Such categories possess a generalized 7-quiver,
with meshes formed by generalized almost split sequences ¢! — C — C"
which we call 7-sequences. Here u is only a weak kernel of v, and v is a weak
cokernel of u, that is, the condition that w is monic and v epic is dropped.
Nevertheless, for given C’ or C”, the whole sequence is unique up to isomorph-
ism. When we pass to a quotient category € := A-lat/[N] with respect to an
object class N, every almost split sequence C’ »— 7 — C" with C,C',C" £ 0
in € survives as a T-sequence (not necessarily as an almost split sequence) in
€. If ¢’ = 0 in G, the object C” € € is in a sense “projective” (Corollary
of Proposition 8), and there is a right T-sequence 0 — C' — C” in C. If the
middle term C vanishes in €, the right T-sequence in € is always of the form
0 — 0 — C", although C’ might be non-zero in C. For our special quotient
categories occuring in 8y, however, there are at most two indecomposable A-
lattices C’ of that type which can be determined explicitly. Therefore, using
the structure of bijective lattices over orders [9], we obtain a rather simple
procedure for the determination of RAs,o. The possible cases are given in
Theorem 2.

1 Derived orders

Throughout the following, let R be a complete discrete valuation domain with
quotient field K, and let A be a finite dimensional K-algebra. An R-subalgebra
A of A is said to be an R-order in A if gA is finitely generated and KA = A.
Thus A is a free R-module. Conversely, every R-algebra A with rA finitely
generated and free is an R-order in K ®p A. A finitely generated R-free (left)
A-module E is said to be a (left) A-lattice. The (additive) category of left
{resp. right) A-lattices will be denoted by A-lat (resp. lat-A). There is a
duality

A-lat = lat-A 1)

which associates to any left A-lattice E the right A-lattice E* := Hompg(FE, R).
Therefore, E € A-lat is said to be injective if E* is projective. A projective
and injective A-lattice is called bijective.

A morphism in an arbitrary category is said to be called regular if it is
monic and epic. Thus a morphism

u:P—1TI (2)
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in A-lat is regular if and only if u is injective with R-torsion cokernel. To u
we associate the class 2, of A-lattices H such that u admits a factorization

w:P ST 3)

with regular v’ and v”. If we regard u as an embedding, then the objects of
2, are isomorphic to the A-lattices between P and I.

If Ra denotes the class of regular riorphisms in A-lat, then A-lat admits
a calculus of left and right fractions [5] with respect to Rx. The localization
(A-lat)[R, '] is equivalent to the category A-mod of finitely generated left A-
modules. In fact, every E € A-lat admits a natural embedding F — KFE =
K®gE € A-mod, and the morphisms E — F in (A-lat)[R;'] can be regarded
as A-linear maps KF — KF. We always assume this identification in what
follows. In particular,

Homy (E, F) = {f € Homus(KE,KF)| f(E) C F}. (4)

For a class M of morphisms in A-lat, let [M] denote the ideal generated by M.
Regarding objects as identity morphisms, this also applies to object classes C.
Thus [€] consists of the morphisms which factor through a finite direct sum of
objects in €. For a regular morphism u in A-lat, we denote by [u™!] the ideal
in A-lat generated by the morphisms which factor through v~ (if regarded
as morphisms in (A-lat)[R;']). Then we have

[Zu] =[], (5)
We call a regular morphism (2) in A-lat hereditary [10] if it satisfies

(H1) P is projective; I is injective.
(H2) Homy (P, Coku) = Exta(Cokw,I) = 0.
(H3) Exta(H,L)=0for H,L € Z,,.
For regular u : P < I and E € A-lat we define
E_:=En[{f(P)|f € Homa(E, 1)} o
6
E*:=E+)» {f(I)| f € Homa(P, E)}.

Thus
E_CEcE". )

Dually, the regular morphism u* : I* < P* defines a sublattice and an
overlattice for any right A-lattice F:

F.CcFCE" . 8
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The relationship between (7) and (8) can also be expressed by
(B = (B (B = (B (9)

Proposition 1.. If u: P < I is a regular morphism in A-lat satisfying (H1),
then (H2) is equivalent to

P.=pP;, I"'=1I (10)
Proof. The short exact sequence P — I —» I/P induces short exact

sequences

Homp (P, P) » Homa (P, I) - Homa (P, I/P)
Homa (I,I) — Homp (P, I) - Exta(I/P,I).

Now the assertion follows immediately. O
The closure condition (10) implies
Pt=1; I_=P (11)

In fact, P* c I = I, and thus P* = I since the identity 1: P — P maps I
to I. By duality, this also gives J_ = P. In other words, (11) says that there
is a natural ring isomorphism

Enda (P) = Endj (I) (12)
By [10], Proposition 6 and Proposition 8, we have

Proposition 2.. Let u: P < I be a hereditary morphism in A-lat. Then A
and X are overorders of A, and for every E € A-lat:

E'=NE; E_=Homa(A,E); A_E*CE._ (13)
Here Homy (X, E) has to be regarded as a A-lattice in Homu(A, KE) =

KE. Thus E_ is the largest A -submodule of E. Proposition 2 implies that a
hereditary morphism u : P < I allows to associate to A the derived order

A X

S = <A+ A+A_) C My(A). (14)

Moreover, we have an additive functor

Gy : A-lat — 6, A-lat (15)
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given by 3, FE = (gi) From (10) and (11) we infer

Bu(Zu) = (p)- (16)
The main theorem of [10] is as follows.

Theorem 1.. Let A be an R-order in a finite dimensional K -algebra A, and
let w: P < I be a hereditary morphism in A-lat. Then the functor (15)
induces an equivalence of quotient categories:

8, : Alat/[2,] = §,A-lat/[(])]. (17)

In order to apply this theorem, we have to know more about the §, A-lattice
(1) and the object class Z,. Firstly, we have

Proposition 3.. For a hereditary morphism u : P < I in A-lat, the 6,A-
lattice (113) 18 bijective.

Proof. By duality, it suffices to show that ( ;,) is projective. As the functor
(15) is additive and ( II,) = 8, P, we only have to prove that 8, carries indecompo:
projective A-lattices to projective 8, A-lattices. In fact, (14) shows that 8, (A A)
is a direct summand of é,A. O

Notice that for any R-order T, bijective I'-lattices B can be rejected, i. e.
there i8 an R-order I and a ring homomorphism I' — I with R-torsion
cokernel such that every indecomposable I'-lattice is either a I"-lattice or a
direct summand of B (see [4], 2.9; [10], Proposition 7).

Now let us turn our attention to Z,. By (12) there is a decomposition

(p)=(R) @ o (§) (18)

with [;, P; indecomposable for all ¢. There may be trivial direct summands
(§) with P; = I;. They have no effect to the functor (15). On the other hand,

if (II, ) is a non-trivial direct summand of (18), then I;/P; is indecomposable
by [10], Proposition 9, and uniserial by [10], Lemma 3 and Proposition 10.
Obviously, the inclusions u; : P; < I; are again hereditary, and (18) amounts
to a decomposition

u=1u & - D us. (19)

Proposition 4.. Let u: P — I be a hereditary morphism in A-lat. Consider
a decomposition (19). Then every H € Z,, 1s isomorphic to some H1 ®---® H,
with H; € Z,,, fori€ {1,...,s}.
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Proof. We may assume that H has no direct summand in common with
P. By [10], Corollary of Theorem 1, there is some H' := H, & --- & H,
with H; € Z,, such that H/P & H'/P. By (H3) this isomorphism lifts to
homomorphisms f : H - H' and g : H' — H with f,g € Enda(P). Thus
1 — gf factors through P, whence f is a split monomorphism. O

For an object class € in an additive category A, let addC be the full
subcategory of A consisting of the direct summands of finite direct sums of
objects in €. By Ind A we denote the class of indecomposable objects in A,
whereas ind A denotes a system of representatives of the isomorphism classes
in Ind A. With

Hy:=add 2, (20)

we clearly have
[Z4] = [Hu] = [ind Hy,). (21)

Corollary 1. Let u : P < [ be a hereditary morphism in A-lat with a
decomposition (19). Then

IndH, =24, U---UZ,,. (22)
In particular, ind H,, is finite.

Proof. The finiteness of ind K, follows since for each u; : P; — I, the
A-module I;/P; is uniserial by [10], Lemma 3 and Proposition 10. 0

Corollary 2. Every hereditary morphism u : P — I in A-lat gives rise to a

surjective map
p:ind(A-lat) - ind(d,A-lat) (23)

with finite fibers p~1(E) having just one element if E is not a direct summand
I
of (p)- ‘

Proof. This follows by Theorem 1 and (16). O

Remark. In other words, Theorem 1 yields an “almost bijection” (23) between
the indecomposables of A-lat and §,A-lat, respectively. There are finitely
many exceptional fibers p~! (IIJ,) corresponding to the indecomposable direct

summands ( 113’,) of ( II,), and up to isomorphism, the A-lattices in p~*( 113',) form
achain P =HyCH,C---CH, =1TI.

In the following proposition, {( ) denotes the length of a A-module.
Proposition 5.. Every hereditary morphism u in A-lat has a decomposition

vEu @ DuT (24)
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with u; : P; < I, hereditary such that the I;/ P; are uniserial and the compositior.
factors of 1 & ---® L. /P, & --- ® P, are pasrwise non-isomorphic. Then

lind H,| =7 + Z I(I;/ P). (25)

=1
Moreover, 4] := Oy, @.-@u. (&) 18 hereditary in dy,@..gu. A-lat, and

au. = Ou, ®---®u, — 8u’l auzﬂé“-@un' (26)

Proof. The existence of a decomposition (24) with the mentioned properties
follows by [10], Theorem 1 and Proposition 10. Formula (25) says that the
A-lattices between P; and I; are pairwise non-isomorphic. Thus assume that
P,cLcHCI with H= L and H # L. An isomorphism a : H ~ [,
extends to an endomorphism of H* = L* = I; with a(;) # ;. By [10],
Proposition 9, this implies a(f;) C P;, whence P; = L = H = I;, in contrast
to (H2).

In order to prove (26), define

# 7
(8) = Oweo-ou.(B) (5) = 0u(B)
for any E € A-lat. Then
E*=E'+E® E_=EnE,.

Furthermore, we may assume that m; =--- =m, = 1. Then

uf : (PRS0 ) o (10RO L),

This implies (26). It remains to show that v} is hereditary in 8,,4...@u,. A-lat.
Firstly, u} satisfies (H1) since Oy,g...¢u, respects projectives and injectives.
Moreover, (10) holds for u}, whence | satisfies (H2). Finally, [11], Theorem 2
and (26), yields (H3) for u]. O

Proposition 5 shows that the equivalences (17) given by Theorem 1 can be
decomposed into equivalences 8, with indecomposable .

Example. Examples of hereditary morphisms in A-lat for representation-
finite R-orders A with A = KA semisimple are given in [10] and [11]. In the
triangular matrix algebra A = T3(K), consider the R-order

R 0 0
A=|p R 0],
p p R
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where p := Rad R. If R is a power series ring k[[t]] over a field &, then A is wild
in the sense of Drozd and Greuel [3]. By [10], Proposition 14, the morphism

)= )

in A-lat is hereditary. The derived order §,A is Morita equivalent to the
R-order

R 0 0 0
. |R R R O
S A = b p R O
p p R R
Hence there is a surjection p : ind(A-lat) — ind (8, A-lat) which is one-to-one
}R; R R
up to the exceptional fiber p—! | = p|,|R| -
p p
p

2 r7-categories

It is well-known [1] that an R-order A in A has almost split sequences if and
only if A is semisimple. In this case, if u is a hereditary morphism in A-lat,
there is a close relationship between the Auslander-Reiten quivers of A and
0uA. We shall prove this by means of Iyama’s concept of a T-category [6].

An additive category € is said to be a Krull-Schmidt category ([6]; cf. [8])
if every object in € is a finite direct sum of objects C with the property that
for any « € End(C), either & or 1 — ¢ is invertible. In other words, End(C)
is a (possibly large) local ring. (Iyama [6] assumes that C is skeletally small.)
Consequently, the Krull-Schmidt theorem holds for decompositions of objects
in €. For example, a ring S is semiperfect if and only if the category S-proj
of finitely generated projective left S-modules is a Krull-Schmidt category.
Therefore, a Krull-Schmidt category with finitely many isomorphism classes
of indecomposable objects is tantamount to a semiperfect ring. This implies,
in particular, that idempotents split in a Krull-Schmidt category.

Let € be a Krull-Schmidt category. The ideal Rad € generated by the non-
invertible morphisms between indecomposable objects of € is called the radical
of €. A morphism f: A — Bin C is said to be right almost split for B [2] if
f € RadC, and every h: C' = B in Rad C factors through f. We call f left
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minimal if every morphism g: C — A with fg = 0 lies in Rad €. A morphism
f: A — B is said to be a weak kernel of g : B = D if gf = 0, and every
h: C — B with gh = 0 factors through f.

Proposition 6.. Let g : C = A be a weak kernel of f : A = B in a Krull-
Schmidt category €. Then g decomposes into g = (0 ¢1) : Co®Cy — A such
that g1 is a left minimal weak kernel of f.

Proof. If g is not left minimal, then there exists an indecomposable object
E and a morphism e : E — C such that ge = 0 and ¢ € Rad €. Therefore,
e has a retraction r : C = E with re = 1. Since idempotents split in €, we
get a decomposition g = (0 ¢'): C =E®C’' — A, and ¢’ is a weak kernel
of f. Now the same argument applies to C’, and the requested decomposition
g= (0 g1) is obtained by induction. O

Proposition 7.. Let C be a Krull-Schmidt category. A left minimal weak
kernel {of a given morphism), and a left minimel right almost split morphism
(for a given object) is unique up to isomorphism.

Proof. Let f: A — B and f' : A’ — B be left minimal weak kernels of
g : B » D. Then there are morphisms a : A -+ A’ and o' : A’ -5 A with
f''= fa' and f = f'a. Hence f(1 — d'a) = 0, and thus 1 — a’a € RadC.
This shows that a is a split monomorphism. By symmetry, 1 — aa’ € Rad €,
whence a is a split epimorphism. A similar argument applies to right almost
split morphisms f. O

If g has a weak kernel, we write wker g for the left minimal weak kernel
{(which exists and is essentially unique by the above propositions). The concept
of left almost split morphism, right minimal morphism, and weak cokernel are
defined dually. The right minimal weak cokernel of a morphism f will be
denoted by wcok f. A morphism of the form wcok f (resp. wker f) will be
called a weak (co-)kernel.

For an object C € €, a sequence
C 5 9C -5 C (27)

will be called a right T-sequence if u is left and v right almost split, and u =
wkerv. Here u € Rad € implies that v is left minimal. Therefore, Proposition 7
implies that up to isomorphism, a right r-sequence is uniquely determined by
C. Dually, a sequence

c¥ocrC (28)
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with o' left and o' right almost split and v' = wcoku’ will be called a left -
sequence. If a right T-sequence (27) is also a left T-sequence, we simply speak
of a T-sequence. In particular, every almost split sequence (27) is a T-sequence.
Namely, a t-sequence {27) with C indecomposable is an almost split sequence
- if and only if it is ezact, i. e. u = kerv and v = coku. A Krull-Schmidt
category € such that every object C has a right and left T-sequence is said
to be a T-category [6]. For instance, every R-order A in a semisimple algebra
gives rise to a 7-category A-lat. The fundamental property of T-categories is
given by

Proposition 8 ([6], 1.3).. Let C be a T-category. For any indecomposable
object C with 7C # 0 (resp. 7~ C # Q) the right (left) T-sequence starting with
C is a T-sequence.

Like in the case of almost split sequences, the objects C with 7C = 0 are
in a sense “projective”:

Corollary. An indecomposable object P in o T-category C satisfies TP =0 if
and only if every weak cokernel C — P is a split epimorphism.

Proof. Let, P be indecomposable with 7P = 0, and let D 2, C % Pbe

a sequence with ¢ = wcok d. Suppose that ¢ is not a split epimorphism. Then
¢ € Rad €, and we get a commutative diagram

0— 9P 2 s p

[ L

D——C——P

with ed = 0. Hence e = pc for some p : P — ¥ P. This implies (1 — vp)c = 0,
and thus 1 — vp € Rad €. Since v € RadC, we get P = 0, a contradiction.
Conversely, assume that 7P # 0. Then 7P — 9P — P is a T-sequence,
whence 9P — P is a weak cokernel that is not a split epimorphism. O

In contrast to almost split sequences, 7-sequences behave well with respect
to quotient categories. Let us call an object S of a Krull-Schmidt category €
a source object if every non-zero morphism C — S is split epic. Equivalently,
S is an indecomposable object having a right 7-sequence with 95 = 0. Dually,
we call S a sink object if every non-zero morphism S — C' is split monic. The
following result is due to Iyama ([7], 2.1). For the sake of completeness, we
include a proof.
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Proposition 9.. Let C be a T-category with o full subcategory N. Let (27)
be a right T-sequence in C with C' indecomposable such that C is not a source
object in C/[N]. Then (27) induces a right T-sequence in C/[N].

Proof. Clearly, €/[N] is again a Krull-Schmidt category. Let f denote
the residue class modulo N of a morphism f in €. Obviously, the functor
€ — €/[N] respects right and left almost split morphisms. Now let b: A = ¢¥C
be given with b = 0. Then we have a commutative diagram

7 —259c "5 ¢

b
A—a)N

with N € add N. Hence ¢ € Rad €, and thus ¢ factors through v, say, ¢ = vc'.
Therefore, v(b — c’a) = 0. Consequently, b — c’a factors through u, whence b
factors through @. It remains to prove that @ is left minimal. Assume that
there is a morphism e : B = 7C' with B indecomposable such that ze = 0 and
€ ¢ Rad(C/[N]). Then Proposition 8 implies that e is an isomorphism and
7C # 0 in €/[N]. Hence % = 0, and 7 is a weak cokernel of . But this shows
that 9C = 0 in €/[N], i. e. C is a source object in €/[N]. a

3 The Auslander-Reiten quiver of a derived ordef

Now we apply the results of §2 to an R-order A and its derived order d,A
with respect to a hereditary morphism % : P — I. By Proposition 5 we may
assume w.l.o.g. that u is indecomposable, i. e. P (hence I) is indecomposable.
For a A-lattice E we define the upper radical of E as the largest overlattice
F D FE in KE with F/E semisimple:

Rad’E := {z € KE | (Rad A)z C E}. (29)

For a hereditary morphism v : P < I, consider the following A-lattices in
KP=KI
P’ := A_(Rad’°I); I' =Homa(A_,RadP). (30)

Proposition 10.. Let v : P < I be a hereditary morphism in A-lat. Then

r " ° ad® + f
Rad(}) = (geap)) = 8ul'; Rad’(f) = (F2L0) =0,P.  (31)



136 W. Rump

Proof. By duality, it suffices to prove the first pair of equations. Assume
w.l.o.g. that u is indecomposable. By [10], Corollary of Proposition 10, the
composition factors of the left A-module A/A_ are subquotients of I/P. Hence
(H2) implies

A_I=P; Homp(A_,P)=1I (32)

In particular, the second equation gives I' C I. If Rad(f) = (£), then
G C Rad P, hence G C (Rad P)_. Since A_ = A, is a right A -lattice, we
infer Rad(}) = ((RaéP)_). Thus it remains to show that (I')_ = (Rad P)._.
Suppose that I' D P. Then I = P* c I’ C I. Hence A_I' = P ¢ RadP, a
contradiction. So we have

P¢r; P¢lI (33)

Therefore, (I')_ C I_= P, and (I')_ # P by (33). Consequently, (Rad P)_ C
(I")_ c Rad P, whence (I’)_ = (Rad P)_. O

By Theorem 1 and Proposition 9, the right 7-sequences in A-lat and
duA-lat are related via the right 7-sequences in € := §,A-lat/ [(113)], unless
they induce the T-sequence of a source object in €. This gives an almost
one-to-one correspondence between the almost split sequences in A-lat and
d,A-lat. To get the precise relationship we have to locate the bijective object
(£) in 8,A-lat. The classification of bijectives given in [9], Proposition 2,
easily generalizes to orders in non-semisimple algebras:

Proposition 11.. Let T be an R-order in a finite dimensional K -algebra, and
let B be an indecomposable bijective I'-lattice. The following (self-dual) cases
are possible:
(I) Rad B is injective. Then Rad B is indecomposable, and Rad®B is indecomposa.
projective. Moreover, KB is o simple KT'-module.
(a) Rad B~ B. ThenT =Ty xT'y with a mazimal order Iy in a simple
K -algebra such that B € T'y-lat.
(b) Rad B % B. Then there are irreducible morphisms RadB — B — Rad°B
(II) Rad B = E ® E, with E1,Ey # 0. Then Rad°B = Fy @ F> with E; C F;,
and the KF; are simple fori € {1,2}.
(a) Ey = E;. Then there is one almost split sequence Ey — B —» F
with middle term B.
(b) E\ % E». Then there are two almost split sequences Ey — B — Fj
and By — B —» F.
(II1) Rad B is indecomposable non-injective. Then Rad(Rad’°B) = Rad B,
i. e. there is a submodule C of Rad® B with B+C = Rad®°B and BNC =
Rad B.
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(a) All these complements C are isomorphic to B. Then KB is simple,
and there is an almost split sequence Rad B — B? —» Rad®B.
(b) There exists a complement C % B. Then there is an almost split

sequence Rad B »— B @ C -» Rad®B.
There are mo other irreducible maps or almost split sequences containing B

than the mentioned ones.

In all cases except (Ia) there exists an overorder I of I" such that B is
the only indecomposable I'-lattice that is not a I”-lattice. For bijectives ({,)
arising from hereditary morphisms P < I, case (Ia) is characterized as follows.

Proposition 12.. Let u : P < I be o hereditary morphism in A-lat. The
following are equivalent:

(a) (5) = Rad(p) (2') (p) = Rad(p)
(o) I' =T (b') P'= P

(c) I' e H, () Pl e H,

(d) I = RadP (d") P = Rad®I

Proof. Assume w.l.o.g. that u is indecomposable. Since () is bijective, (a)
is equivalent to (a'). Therefore, it is enough to prove the following implications.

(a) = (b): This is an immediate consequence of Proposition 10.

(b) = (c): trivial.

(c) = (d): I' € 3, implies I' = (I")* = I. Hence there is an endomorphism
e: ] ~»I'— IofI. By (33)wehavee € RadEnd,([), and [10], Proposition 9,
implies e(I) C P. Therefore, we get I = I’ = Rad P.

(d) = (a): If I = RadP, then P is the unique minimal overlattice of
Rad P. Hence (33) gives I’ = Rad P. So there is an isomorphism e : I =~ I’
which maps P = I_ to (I')_ = (Rad P)_. By Proposition 10, this implies (a).

O

Proposition 13.. If an indecomposable hereditary morphism u : P — I in
A-lat satisfies the equivalent properties of Proposition 12, then the algebra
A = KA has a decomposition A = Ag X A; with Ag simple such that KP is a
simple Ag-module, and the A-lattices in K P form a chain.

Proof. We show first that every A-lattice H with P C H C [ has a unique
maximal submodule. For H = P this is clear. For H # P, every maximal
submodule H’ strictly contains Rad P. Therefore, Rad P = I implies H' D
P, whence H’' is unique. Now the argument can be repeated. So we infer
that every A-lattice L in S := KP with KL = S has a unique maximal



138 i W. Rump

sublattice. Hence the A-lattices L with KL = § form a chain. Assume that
495 is not simple. Then there is a non-zero proper submodule N of S. Since
every A-lattice between (Rad R)P and P has a unique maximal submodule,
we have NN P C (Rad R)P, a contradiction. Thus 4S5 is simple. Moreover,
S = KP = KI implies that S is projective and injective. Now let Q be
any indecomposable projective A-module. Then every non-zero A-linear map
Q@ — S (resp. S = Q) splits. Hence it is an isomorphism. Consequently, there
is a two-sided decomposition A = Ag x A, such that Ap is a simple K-algebra,
and S is a simple Ap-module. O

Example. Consider the R-order

_ (R »p
A= (R R;—R

with p := Rad R. There are only 4 indecomposable A-lattices, namely,

=) n=CGla -G

The hereditary morphism u : P <+ I with P := (E) = P satisfies I = Rad P.
We get
R p R R
_pt R pt opt R R
WA=1"p v 'R R |*\s R
R p R R

a product of a maximal order I' in M4(K) with (é) as indecomposable I'-
lattice, and a hereditary order in My (K).

For an R-order A in a semisimple K-algebra, let %4 denote the Auslander-
Reiten quiver of A. More generally, the left and the right 7-sequences of a
T-category € define a valued translation quiver 2(C). We call it the T-quiver
of €. Thus A(A-lat) = A,. By Proposition 9, the 7-quiver of a quotient
category of A-lat is immediately given by 2s. The relationship between 2Aa
and s A for a given hereditary morphism u can be described by Theorem 2
below. We need the following auxiliary result.

Proposition 14.. Let A be an R-order in a semisimple K-algebra, and let
w: P <3 I be a hereditary morphism in A-lat. Then (X ) € H,. Conversely,
every indecomposable non-projective A-lattice E with TE € 3, is a direct
summand of A .

Proof. Choose a generating system ¢1,...,, of the R-module P*, and
consider ¢ := (¥1,...,¢,) € (P*)™. Proposition 4, applied to P" «— I", gives
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= (pA + (I*)*)* € Hy. The epimorphism ¢ : Ap & (I*)* - H* with
( @ 1) := pa + 1 induces a short exact sequence

Homa (H*, A) = A @ Homa (I*)", A) 5 &

in A-lat, where ¢*(f) = f(¢) @ f, and p(a ® f) = a — f(¢). This shows that
K =7 H® Q with Q € A-proj. Hence 7(A) =777 H € H,.

The projection of (P*)™ to the i-th coordinate yields an exact sequence
H*N(P*)" ! < H* - ;A + I* that splits by (H3). Furthermore, there is a
(split) exact sequence .

1A+ + o I A+ T)N (s A+ I*)y o (1A + -+ @s1 A+ I*) D (s A +
» oA+ A+ T

for any s € {2,...,n}. By a suitable choice of {¢1,...,¢,} this shows that
every indecomposable A-lattice in H, is a direct summand of H. Therefore,
the equation A = 7~ H & @) completes the proof. 1

Theorem 2.. Let A be an R-order in a semisimple K-algebra A, and let

u: P < I be an indecomposable hereditary morphism in A-lat. Let A denote

the T-quiver of € := &,A-lat/[(})] ~ A-lat/[Z.]. The following cases are

possible:

(Ia) P’ =2 P. Then ¥s,n = ALl Ay, where Ao consists of the single vertex
(L) together with a loop (}) = (})-

Assume that we are not in this case. Then P I ¢ HH,, i e they correspond
to vertices 8.P' and 8,I' in . The Auslander-Reiten quiver U, i3 obtained
from A by inserting the bijective B := (}I,) between 8, P and 8,I'. Possible
cases are:
(Ib) P’ is projective. Then there are two irreducible maps 8,1' - B — 8, P’.
(I) P' = E; ® E; with KE,, KE, stmple. Then 0,P' = 3,F, ® 8,E> and
8.I' = Rad(8, E;) ® Rad(8, E,), and B is a diagonal between 8, P' and
o.I'.
(a) E; =2 Ey. There is one almost split sequence Rad(8,E;,) — B —»
O.E.
(b) E; % Ey. There are two almost split sequences Rad(6,E) — B —»
OuF» and Rad(8,Fs) — B —» 0, F;.
(III) P’ is indecomposable non-projective. Then there is an almost split sequenc:
I'— E — P'. Let 0,F = B®* ® C with s mazimal.
(a) E € H,. There is an almost split sequence 8,1’ — B% —» §,P’.
(b) E € Hy. There is an almost split sequence 8,I' — B® C —» 0, P,
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Proof. Note first that J,(aA) is a direct summand of §,A. Thus if P’ is
projective, then 8, P is also projective. Assume that P’ is decomposable, say,
P' = FE; ® E;. Then KP' = KP implies that Ej, Fy ¢ H,. Hence 8, P is
decomposable. By Proposition 11 we infer that 8, P’ is non-projective, and so
P’ is non-projective. Therefore, we have shown that case (I) is characterized
by the property that P’ is projective.

Conversely, let 8, P’ be projective, hence indecomposable. Then P’ is
also indecomposable. Suppose P’ is non-projective. Then there exists an
almost split sequence H »» L — P’ in A-lat. Since K(8,P') is simple by
Proposition 11, we infer that K P’ is simple. By Proposition 12, we have
P’ ¢ H,, and Propositions 10 and 11 imply that 8, P’ is a source object in
C. Consequently, L € H,. Moreover, §,A = O,A ® 0, implies that P’ is
a direct summand of A. Hence H € J{, by Proposition 14. Since H = 7P’
is indecomposable, this implies L = H, ® H, with H; € Z,. Therefore,
H — L gives two irreducible maps e; : H — H; which are injective since
KH is simple. We may assume the e; as inclusions. Then H* C H} and
H* = H = Iforie {1,2}. f H* # H;} would hold for one i, there would
be a non-invertible r € Enda (H;") with r(H;") = H*. By [10], Proposition 9,
this implies H* C (H;)_. Since e; is irreducible, H;/H is simple. Moreover,
H* # H; implies H* # (H;)_. Therefore, the inclusions H C H* C (H;)_ C
H; give H; = (H;)_ and H = H" = Rad(H;)_. Hence I & RadP. By
Proposition 12, this implies P’ = P, a contradiction. So we have H' = H N
for i € {1,2}, whence H; = H,. But this contradicts the right minimality of
H < H) © H,.

Thus we have shown that P’ is projective if and only if 8, P’ is projective.
So the cases (Ia) and (Ib) of the theorem correspond to the same cases for the
bijective d, A-lattice B according to Proposition 11. This proves the assertions
in (I) and (II).

In case (III), there are almost split sequences 7P’ »— 9P — P’ and
(O P') — ¥(OyP') — 8, P’ where 7(0,P') = 8,I' by Propositions 10 and 11.
If 7P’ € H,, then P’ is a direct summand of A by Proposition 14. But then
O, P' is projective, in contrast to the above. Thus 7P’ ¢ H,. If 9P’ € H,,
then 9,(TP') is a sink object in €. On the other hand, 8,1’ is the only sink
object in €. Hence 7P’ 22 I'. This settles case (IITa). Otherwise, 9P’ & H,,
and the right almost split sequences of P’ and 8, P’ are related via €. O

Example. The R-order

R—R px
A= (Rxp ;_2) C Ma(K) x My(K)

has 10 indecomposables, namely, H; := (g) and H, := (}) in the first rational
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component, L; = (?), Ly := (), and L3 := (g) in the second rational
component, the projectives P := (Rxp) Py := (BXF), and injectives I; :=

(BR), I == (%), and an indecomposable L of rational length 3. The

Auslander-Reiten quiver is a cylinder (with equal vertices to be identified, and
dashed lines indicating the almost split sequences):

Hy ---- Ly ~--- Hy ---- Ly ---- Hp
N N /N S N S
Pl ____I2 Pl - - - .[2
s \ SN S \ /‘ \L
3 -7~ -t - -7 43
N f NN /‘ N
P o---- I Po---- 1,
AN AN AN SN
Hy ----Ly----H ---- Ly ---- H;

For the hereditary morphism v : P < I; we have PP = Hi ® L, and I' =
Hy @ Ly, i. e. case (IIb). Removing P;,I; and inserting a bijective B gives
the Auslander-Reiten quiver of §,A which is a torus:

Ly ---- Hy Ly ---- Hy Ly ---- Hy
N N ~ N
B B B
VAR 7N 7N
Hy ----L ----Hy ---- Ly ---- Hy ---- Ly ---- Hy
N AVEVS N/
I I I
VAR VAR VAN
Ly ---- L ----Lg----L ----L3 ----L ----1Ls
NS NS e
P2 P2 P2
H ----Ly----Hy ----Ly ---- Hy ---- Ly ---- H;
N N N
B B

B
/N VAN 7N
oL B H - L
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MODULES WHOSE EXACT SUBMODULES
ARE DIRECT SUMMANDS

Adnan Tercan

Abstract

A module M is called an ES-module provided every exact submodule
of M is a direct summand of M. It is shown that if M be the direct
sum M; & M, of ES-modules M, and M, such that M; is Ms-injective
then M is an ES-module. In consequence it is obtained when the finite
direct sums of ES-modules is an ES-module. Moreover some results on
the direct sum of two certain CS-modules are generalized to left exact
preradicals.

Throughout this paper all rings will have identities and all modules will be
unital. Let R be any ring and M a right R-module. Recall that a submodule
N of M is called closed submodule of M provided M/N is nonsingular and a
module M is called a CLS-module if every closed submodule of M is a direct
summand (see [9]). A functor 7 from the category of right R-modules to itself
is called a left exact preradical if it has the following properties

(i) r(M) is a submodule of M for every right R-module M,

(ii) r(N) = NNr(M) for every submodule N of a right R-module M, and

(iii) ¢(r(M)) C r(M') for every homomorphism ¢ : M — M’, for right

R-modules M, M'.
Furthermore, a left exact preradical r is called radical if r(M/r(M)) = O for
every right R-module M. It is clear that the singular submodule, socle are
left exact preradical and the second singular submodule (or the Goldie torsion
submodule) is radical. For an excellent treatment of left exact preradicals the
reader is referred to [2] (see, also [8]).

In this paper we generalize CLS-modules in terms of left exact preradicals,
for a ring R. We begin by explaining exact submodules.

Key Words: CS-module, relative injective modules, left exact preradical.
Mathematical Reviews subject classification: 16D10, 16D15.
Received: November, 2000.
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Definition 1. Let R be any ring, let r be a left exact preradical in the
category of right R-modules and let M be a right R-module. A submodule
N of M is called ezact submodule (or ezact in M) provided »(M/N) = 0.
Clearly every module M is exact in itself. Moreover, if r is a left exact radical
then r(M) is an exact submodule of a module M, and by [2, Proposition 1.1]
we have :

Lemma 2. Let R be a ring and let v be o left exact preradical in the
category of right R-modules and let M be a right R-module. Then the intersection
of exact submodules of M is also an exact submodule of M.

Proof. Let £ = {X : X 8 exact in M} and let I = NxeeX.
Suppose that N is an exact submodule of M. Then I < N. Let N’ = N/I and
M’ = M/I. Hence N' < M’ and r(M’'/N') =0ie. N'isan exact submodule
of M’. Thus r(M') is contained in all these modules N'. Therefore r(M') = 0.
It follows that I is exact in M.

Definition 3. A module M is called an ES-module provided every exact
submodule of M is a direct summand of M.

The following result shows that ES property is inherited by direct summands.
Lemma 4. Any direct summand of an ES-module is an ES-module.

Proof. Suppose M = K @ K' for some submodule K, K' of M. Let L be
an exact submodule of K. Since

M/L&K' =Ko K'|[L&K' =2 K/L

then r(M/L&® K’} = 0. i.e, L ® K’ is an exact submodule of M which gives
that L is a direct summand of M. Then L is a direct summand of K. It
follows that K is an ES-module.

Note that a direct sum of ES-modules need not to be ES-module in general.
The following example is taken from [9, p.1560].

Example 5. Let M be the Z-module Z @ Z where Zy = {a/b: a,b €
Z and b is odd}. Let r denote Z; i.e. the Goldie torsion theory (see
[3] or [8]). Then both Z and Z; are ES-modules. However it is clear that
My is not an ES-module. Note also that neither Z is Zs-injective nor Z. is
Z-injective.
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We next prove a theorem which was pointed out above.

Theorem 6. Let a module M = M, ® M; be o direct sum of ES-modules
M, M, such that My is Ms-injective. Then M is an ES-module.

Proof. Let N be an exact submodule of M. Then r(M/N) = 0 where r is
a left exact preradical for the ring R. Now M; /N N M; = M; + N/N implies
N N M, is an exact submodule of M;. Thus N N M, is a direct summand of
M; and hence of M. It follows that N N M, is a direct summand of N, so
N = (NN M) K for some submodule K of N. Let m : M — M;,i=1,2
denote the canonical projections. Let o = 72 |k and 8 = my |k. Consider the
following exact diagram.

0 — K — M,

3
M,

Note that a is a monomorphism and M; is Ms-injective. There exists a
homomorphism ¢ : Ma — M; such that pa = 5. Let

L={z+¢():ze M}

Then it can be easily checked that L is a submodule of M and L = M,.
Moreover, M = M; @& L. If k € K then k = m; + my for some m; € M;,
1 =1,2. Then

my = B(k) = pa(k) = p(ma);
and this implies that k = @(mq) + mg € L. Thus K C L. Since
M/N = (M;/NnM)®L/K

then r(L/K) = 0. Hence K is an exact submodule of L. But L =2 My so that
K is a direct summand of M. It follows that M is an ES-module.

Let n be a positive integer and M;, My, ..., M, are right R-modules. Recall
that these modules are called relatively injective if M; is M;-injective for all
1<i# 3 < nseel[4].

Theorem 7. Let R be a ring and M o right R-module such that
M=M &®M;®... ®M, is a finite direct sum of relatively injective modules
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M;, 1 <i<n. Then M is an ES-module if and only if M; is an ES-module
for each 1 < i< n.

Proof. The necessity is clear by Lemma 4. The converse follows by
induction on n and using Theorem 6.

Proposition 8. Let E, M be right R-modules such that E is ES and
r(M) = 0 for a left exact preradical r in the category of right R-modules. Then
any eptmorphism o : E — M splits and thus is M on ES-module.

Proof. Let K = kerc. Then E/K = M. Hence r(E/K) =0. So K is an
exact submodule of E. Therefore o splits. By Lemma 4, M is an ES-module.

Following [8, p. 152] a hereditary torsion theory is called stable if the
class of torsion modules is closed under injective envelopes. By [8, Proposition
7.3] the Goldie torsion theory is stable. Thus [9, Proposition 8] is a special
case of the following result.

Theorem 9. Let R be a ring and let r be the left exact radical for a
stable hereditary torsion theory for the category of right R-modules. Then a
right R-module M is an ES-module if and only if M = r(M) & M’ for some
submodule M’ of M and both r(M) and M' are ES-modules.

Proof. Suppose M is an ES-module. Then r(M) is a direct summand of
M so that M = r(M)® M’ for some submodule M’ of M. By Lemma 4, r(M)
and M’ are ES-modules. Conversely, suppose that M = r(M) & M’ for some
submodule M’ of M. Let K be an exact submodule of M. Then (M) < K,
and hence K = r(M)® (KNM'). Now M/K = M'/(KNM') so that K N M’
is an exact submodule of M’. Thus M’ = (KN M’') ® K’ for some submodule
K’'. Hence M = K @ K'. It follows that M is an ES-module.

We need to have r is a left exact radical in Theorem 9. We should give the
following easy example.

Example 10. Let R be a commutative ring and let M be a torsion module
over R which has a unique composition series of length 2. Now, let r denote
the socle. Hence M is the only exact submodule of M. It follows that M is
an ES-module. However (M) is essential in M.

We shall be concerned CS-modules. First recall that a module M is called
CS (or extending) if every submodule of M is essential in a direct summand
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of M. It is well-known that a direct sum of CS-modules need not to be a
CS-module in general (see [1], [4] and references therein). Some conditions
are given in [6] which make direct sum of two CS-modules is CS. Now we
shall prove some similar results to [6, Proposition 20 and Corollary 21] in
general case, namely with left exact preradicals for the category of right R-
modules. We begin by mentioning two definitions. Let My and M, be modules.
Then M, is essentially My-injective if every homomorphism o : A — M,
where A is a submodule of M> and kera is essential in A, can be extended
t0 a homomorphism 8 : My — M; (see [1] or [6]). A module M is said to
have the finite exchange property if, for every finite index set I, whenever
M@ N = ®;crA; for modules N and A;,i € I, then M ® N =M & (®;e1B;)
for submodules B; of A;, i € I (see [1]).

The next result generalizes [5, Lemma 11]. Compare it also with {7, Lemma
5].

Proposition 11. Let R be a ring and let v be a left exact preradical
in the category of right R-modules and let M be a right CS-module. Then
M = M; & M; be a direct sum of CS-modules My, M, such that r(M) is
essential in My and r(M2) = 0. In this case M, is M,-injective.

Proof. Since r(M) < M there exists a direct summand M; of M such
that 7(M) is essential in M;. Then M = M; & M, for some submodule M,
of M. Note that both M; and M, are CS-modules (see [1, Lemma 7.1]).
Since 7 is left exact it follows that r(M) N Mo = (M) = 0. Hence the first
part is proved. For the second part, let N be any submodule of M, and let
@ : N — M; be a homomorphism. Let

L={z-¢p(z):ze N}

Then L is a submodule of M and LN M; = 0. There exists submodules K, K’
of M such that M = K® K’ and L is an essential submodule of K. Note that
r(K)=KnNM; =0, so that My = r(M) C K'. Thus K' = M; & (K’ N M)
and M = K& M, ® (K'NMs,). Let # : M — M, denote the projection with
kernel K & (K’ N M3). Let § = 7 |pr,. Then 6 : My — M, and 6(z) = ¢(z)
for all z € N. It follows that M; is M,-injective.

Theorem 12. Let R be a ring and let r be a left exact preradical in
the category of right R-modules and let M; be o module with finite exchange
property and (M) is essential in My, My be a module with r(My) = 0. Then
M ® M, is a CS-module if and only if My and My are CS, My is essentially
M, -injective and M, is May-injective.
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Proof. The sufficiency follows from [6, Theorem 8]. Conversely, let
M = M, ® M; be a CS-module. Clearly, M; and M, are CS-modules and M,
is essentially Mj-injective, by [6, Proposition 12]. Hence the result follows by
Proposition 11.

Corollary 13. Let R be a ring and let r be a left exact preradical in
the category of right R-modules and let M; be o module with finite exchange
property and r(M,) is essential in My, My be any module. If M1 & M, is CS
then the following conditions are equivalent.

(i) My is essentially Ms-injective,
(11) My is (Ma/r{M>))-injective.

Proof. Obviously (ii) implies (i). Suppose that M = M; & M, is CS
and M, is essentially My-injective. Since My is CS then My = My, & My,
where r(M>2) is essential in Myy and r(Mz;) = 0, by Proposition 11. Thus
M is (Mag /r(Mag))-injective, because it is essentially Mag-injective. Also, by
Theorem 12, M is My;-injective. Thus M is (M /r(M3))-injective.
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DECOMPOSITION NUMBERS FOR SOME
THREE-PART PARTITIONS

Adrian Williams

Abstract

This is the substance of a paper delivered at the Euroconference on
»Rings, Modules and Representations” held at the Ovidius University
in Constanta, Romania from 14-18 August, 2000.

1. Introduction

Let p be prime, k be a field, and assume throughout this paper that A =
(A1, A2, ..., As) I8 a pregular partition of the positive integer n with s parts.
We have A\ > Ay > ... 2 A, > 0 and 24, \; = n and sometimes write A F n
to denote that A is a partition of n. A is p-regular means that no p parts
of A are equal.

If £ has characteristic zero, then the irreducible representations of the
symmetric group o, are characterized by the ko, Specht modules S*. If k has
characteristic p then the modular irreducible representations are the quotients
D* of S* modulo its radical S* N S*. Let dy, = [S*: D¥*] denote the
composition multiplicity of D* in S*, when p is p-regular.For the symmetric
group the problem of finding dx, given A (not necesarily p-regular) and g (for
pp-regular) is still open. It is equivalent to finding the dimension dim D*.

The bulk of this paper record some joint work with Gordon James [1].
We give the theorems which enable one to obtain, at least in principle, the
composition multiplicity of D* in S*» when s = 3 and A3 < p — 1. The last
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theorem [¢f. Theorem B, 2] expresses these decomposition numbers in terms
of multiplicities of two-part factors and that of the trivial module.
In order to state our theorems we first record some well known facts and

definitions.

e d,, =1anddy, #0only if x> X with respect to the dominance order
for partitions. In particular, if usy( > 0, then dy, = 0. (Recall that
4 B> A if and only if Ej.:hu,j > Z§:1Aj for all 7).

o If p; # C(B'0 and pgq1 = 0, then
dAu:[S()\1—1,/\2—1,...,/\5—1) . D(uq —l,ug—l,...,u,—l)] .

o Identify A F n with the set of nodes {(4,7): 1 <j < A and 1 <1< s}
Let A be the node (4, j) and define the p—residue of A by resA =j —1
mod p and the it p—content of A to be the p-tuple (co, ¢1, ..., ¢p—1) Where

¢; is the number of nodes in A with p-residue 1.

e A node A(i, A;) is called removable from a partition A if A\{A} is a
partition, and a node B(i, A; + 1) is addable for A if AU {B} is again a
partition.

e The node A is called normal for y if A is removable and for every addable
node B for u strictly between A and B with resB = resA there exists a
removable node C'(B) of u with res C(B) = resA, and B # B’ implies
that C(B) # C(B'). Such a node is called good if it is the lowest normal
node with this residue.

e The r-restriction (r-induction) of a module M for 0 < r < p— 1 is the
restriction (induced-up module) of a k&, module to S,_; (to0 Gpy1)
and to the block with p-content (co, €1, ..., ¢r — 1, ...,€p—1), (respectively,
(co,C1yenCr + 1,5 0p-1))-

e Let A = (A1, A2,...,As) and p be partitions of n. For 1 € 4 < s, let
o; = M\ +s—1and B = u; + s — 4. The sets {a1,...,a},{B1,-,Bs}
are called S-numbers for the partitions A and p, respectively. Note that
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res(i,A;) = a; — s mod p. Nakayama’s Theorem expressed in terms of
B-numbers states that S* ig in the same block as D* if and only if A and
u have the same p-content, that is if and only if {ay, ...,a5} = {B1, ..., Bs}

as multi-sets.

2. Branching Theorems

As well as the classical branching theorem [cf. 2.2, 2], crucial to obtaining
the decomposition numbers for certain three-part partition are the well known
which give bounds for dy, in terms of the composition factors of D¥ | and
S* |, and a branching theorem of Kleschev [3] for D¥.

2.1. Proposition (Bounds for dy,). Let A, p F n,o Fn—1,7F n+
1 and p,0 and T be p-reqular. Then dy, [D* |.: D°] < {S* |,: D] with
equality if D* is the only composition factor of S* which contains D° on
r-restriction. Similarly, dx, [D* 17: D7) < [S* 17: D7] with equality if D* is
the only compositions factor of S» which contains D™ on r-inducing up.

2.2. Theorem (Kleschev [3]). Assume that p is p-regular and has ezactly
m normal nodes with p-residue congruent to r modulo p and that B is the
lowest of these. Then

(i) [D* |,: DP\MBY] = m; in particular if m = 1, then D* |,= D#\MB}
and if p has no normal node with p—residue congruent to r modulo p, then
D# |.=0;

(i) if B is a good node of u whose p-residue is congruent to r modulo p,
then [D*\B} 472 D] > 0.

3. Node removal theorems

There now follow several results which depend on the S-numbers for u.
We shall assume throughout this section that $* and D* are in the same
block. The first of these is a theorem of Erdmann which applies when all the

B-numbers for y are congruent to zero modulo p.

3.1. Theorem [cf.2.3, 4]. If p = (p— 1)(s — 1,5 — 2,...,1,0) + (® and
4@ is p-regular then dy, = [51\“” : Du“”] _
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The next result may be applied when at least two S-numbers for p are
unequal.

3.2. Theorem [cf.3.6, 1]. Assume that if 1 < i < s and y # i, then
By EBi mod p and B = (y, ) is normal for p. Let = be the subscript such
that a, = B, mod p and A = (z, ;).

(i) If A is not removable, then dy, = 0;

(i) If A is removable then dy, = [S*\{4] : DH\B}]

When some f§ number for p is not congruent to zero modulo p and is not

congruent modulo p to any 5; + 1 we have

3.3. Theorem [cf. 3.8, 1] Assume that there exists y such that 8, /=0
and B, # B:+1 mod p for all i. Let r = 8, — s mod p, B be the lowest node

of p with p-residue r and let A; be any removable node of A with p-residue
r. Then dy, = [S*\{A4} : D#\B]]

When some S-number say f; is congruent to 1 modulo p and no S-number
with subscript smaller than 1 is congruent to 0 modulo p we have

3.4. Theorem [cf. 3.13, 1] Assume that the following hold.

(i) For some i with 1< i < s we have §; = mod p.

(ii) There do not exists i and j with 1 <i < j < s and §; = O\and Bi=1
mod p.

(i1i) For every i with 1 < i < s and 8; = 1 mod p the node (i,u;) is a
removable node of .

Let B be the lowest node (i,u;) of p such that B; =1 mod p.

If X has no removable node with p-residue 1 — s, then dy, = 0.

If X has a removable node of p-residue 1— s, then

[S" . Du] — [SA\{A} . Du\{B}]

4. Three-part Partition

The last result of this kind is specific to three-part partition and applies
when £; =0 and B2 = 1 modulo p.
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4.1. Theorem [cf. 4.5, 1] Assume that A = (\1,A2,A3) and A3 > 0
and p = (p1,p2,0) with the conditions that py > 0 and py — s £ p — 2.
Assume also B =0 and S =1 mod p (so that, in particular, the partition
(p1 — 1, p2) is p-regular). Then [S* : D*] = [S* |_3: D(’“_l'“"’)] .

With these results to hand, an induction and some intricate combinatorics

(Al 1'\21

give the decomposition numbers for S *3) when A3 < p and these are

expressed in terms of two parameters f, and 6, which are defined as follows.

e fp(n,m) = 1 or 0, respectively depending on whether or not n + 1

contains m to base p.

o 6y(n,m) = [Sr—m-1m1); D]

The inductive hypothesis is the case A3 = 1 and the results, obtained by

To Law [5], are given in an Appendix of [1].

4.2. Theorem [cf. Theorem B, 2] Assume that A = (A1, A2, A3) and
= (1, 4o, ug) are partitions of n, with p p-regular and 1 < A3 <p-—1.
(i) If o < As—2 and pg =0, then
a) dru=0p(t1 — A3 +1,A2) if 1 — A3 +2 =0 and A2 +1 =0 mod p;
b) day =0p(p1 — A3+ 1, Ag —pi2) if r — A3 +2=0and Ay = pp mod p
¢) dy, = 0, otherwise.
(3) If uo=Xs—1and u3 =0 and 1 <r <p-—1, then
a) dry =6p(p1,A2) if a+1=00r M1 +2=0, and
n=t€ {2 —3,203—-2,..,A3 —3+p} modp
b)day =605y — 1 A2) if Mg+ 1=0and \y +2=r £ and
n=te{d—2A—-1,..,2 3 —4} modp
¢) dap =01 —1Aa—7)if My +2=0and A +1=r E0 and
n=te€{d—2,A—-1,..,2 3 — 4} modp
d) dxp = 0, otherwise.
(111) If A3 =1 < g and pug =0, and A1 +2=0 and Ay +1 E0 mod p, then
a) g = fpltn — p2, A2 — ) if p2 EXs —1 mod p;
b) day = folps — 2y Ao — pa2) + Sp7" folsn — p2, Ao +k—p2) if pa = Az —1
mod p;
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¢) dxy = 0 otherwise.
(iw) If My +2 E0, o +1=0 mod p, 0 < uz and pg =0 then

a) day = fplpr — p2, Ao + Az — p2) if g Eds —1 and Ao+ Az < Ay

a) day = folpn — pa, da + Az — 2) + B8 fplpia — 2y Do + kb — o) if
pe = Az — 1 and Ag + A3 < Ag;

d) day =0, if A2 + Az > Ay
(v) If \ +2EX;+1EO mod p, 0 < pe and pz = 0 then

a) dxy = fp(pa — piz, Az — p2) = fplln = pi2, Ao + A3 — pi2) if pa2 Eds — 1;

b) dxy = fpln — 2, A2 — p2) + fptn — p2, Ao + A3 — p2) if po = A3 — 1.
(vi) If ps # 0 then dy, = [SPr—#ade—sds=ns) . Dlur—hasnz=us)]

(vii) dx, = 0, otherwise.
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