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On some products in pro-categories and shape
categories

I. Pop

Abstract

This paper has two parts. In the first part we present a case in
which we can calculate in a simple way the product of two inverse sys-
tems as object in a pro-category of a category with directed products,
without counting systems at the same set of indices. In the second part,
which is related to some papers of Keesling [4], Kodama [5], Mardešić
[7], and Dydak-Mardešić [10], we give a sufficient condition by which
a directed product of a category T is transformed by a shape functor
S : T → Sh(T,P) into a directed product. This theorem is applied to the
toplogical shape category Sh(Top) where some examples are obtained.

1 Introduction

Shape theory is an extension of the homotopy theory from CW-complexes to
arbitrary toplogical spaces. More precisely, let HTop denote the homotopy
category, i.e., the category whose objects are topological spaces X and whose
morphisms are homotopy classes [f ] of continuous mappings f : X → Y . Ho-
motopy theory studies the restriction HPol of HTop to the class of spaces hav-
ing the homotopy type of polyhedra. This class includes CW-complexes and
ANR’s for metric spaces. Shape theory studies the shape category Sh(Top),
which is a modification of HTop. Its objects are all topological spaces. The
morphisms are obtained by a process of approximation which uses the mor-
phisms from HPol. Shape theory also studies the shape functor S : HTop →
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Sh(Top). This functor keeps objects fixed, i.e., S(X) = X, and on HPol
it is an isomorphism. Consequently, for spaces having the homotopy type
of polyhedra, shape theory reduces to standard homotopy theory. It is gen-
erally considered that shape theory is the correct substitute for homotopy
theory when one works with spaces beyond the HPol class (see [9]). The
functors H : Top → HTop, S : HTop → Sh(Top) and the composition
Sh := SH : Top → Sh(Top) have a number of analogous properties. But
there are also some exceptions. Thus, if for topological spaces X and Y , X×Y
denotes their Cartesian product with πX : X × Y → X and πY : X × Y → Y
the canonical projections, then it is well known that (X×Y, Sh(πX), Sh(πY ))
is not the product of X and Y in Sh(Top). In fact, James Keesling [4] has
exhibited a noncompact subspace X ⊂ R2 for which X×X is not the product
of X with itself in Sh(Top). This example ( which is discussed in Section
4) has raised interest in finding pairs (X,Y ) of topological spaces for which
(X × Y, Sh(πX), Sh(πY )) is the product of X and Y in the shape category
Sh(Top). Thus, in the same paper, Keesling proved that for compact Haus-
dorff spaces X and Y , the answer is positive. Another special case when
this statement is true is the case when both X and Y belong to the class
HPol. This is because X,Y ∈HPol imply X × Y ∈HPol and every shape
morphism F : Z → X to a space X ∈HPol admits a unique homotopy class
[f ] = H(f) of a mapping f : X → Y so that F = S[f ]. Then Sibe Mardešić
proved in [7] that if a compact Haudorff space X has the property that, for
every polyhedron P , (X × P, Sh(πX), Sh(πP )) is a product in Sh(Top), then
(X ×Y, Sh(πX), Sh(πY )) is a product of X and Y in Sh(Top), for every topo-
logical space Y . Later, in [10] Jerzy Dydak and Sibe Mardešić found a metric
continuum X and a polyhedron P such that the Cartesian product X×P fails
to be the product of X and P in the shape category Sh(Top)(see Section 4).
Finally, in the context of the same problem, Yuskihiro Kodama [5] proved that
if X is a compact and Y is a paracompact space then Sh(X × Y ) is uniquely
determined by Sh(X) and Sh(Y ).

This paper has two parts. In the first part we present a case in which we
can calculate in a simple way the product of two inverse systems as object in a
pro-category of a category with directed products, without counting systems
at the same set of indices. In the second part, which is related to some papers
of Keesling [4], Kodama [5], Mardešić [7], and Dydak-Mardešić [10], we give a
sufficient condition by which a directed product of a category T is transformed
by a shape functor S : T → Sh(T,P) into a directed product. This theorem is
applied to the topological shape category Sh(Top) where some examples are
obtained.
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2 Some products in a pro-category

Let C be a category with directed products, and X = (Xλ, pλλ′ ,Λ), Y =
(Yµ, qµµ′ ,M) two inverse systems in C. If C has products, then for two mor-
phisms f : X → Y , f ′ : X ′ → Y ′ in the category C there exists a unique
morphism f × f ′ : X ×X ′ → Y × Y ′ in C, satisfying the relations

πY ◦ (f × f ′) = f ◦ πX , πY ′ ◦ (f × f ′) = f ′ ◦ πX′ . (2.1)

In addition, if g : Y → Z and g′ : Y ′ → Z ′ are two other morphisms in C, then

(g × g′) ◦ (f × f ′) = (g ◦ f)× (g′ ◦ f ′). (2.2)

Now consider the set N = Λ ×M = {ν := (λ, µ)|λ ∈ Λ, µ ∈ M}, with the
order relation ν = (λ, µ) ≤ ν′ = (λ′, µ′) if and only if λ ≤ λ′ and µ ≤ µ′.
Then (N,≤) is a directed set. On this set we index the following objects
and morphisms of the category C: Zν := Xλ × Yµ, rνν′ := pλλ′ × qµµ′ , for
ν = (λ, µ) ≤ ν′ = (λ′, µ′). Then, using relations (2.1) and (2.2), we can easily
prove that Z := (Zν , rνν′ , N) is an inverse system in the category C.

Theorem 2.1. Supose there exist two increasing functions ϕ : (Λ,≤)→ (M,≤
) and ψ : (M,≤) → (Λ,≤) , satisfying the following condition: for any pair
(λ, µ) ∈ Λ×M , there exists either an index λ′ ∈ Λ, with λ′ ≥ λ, ϕ(λ′) ≥ µ, or
an index µ′ ∈ M , with µ′ ≥ µ, ψ(µ′) ≥ λ. Then for the above defined inverse
system Z := (Zν , rνν′ , N) there exist two pro-morphisms πX : Z → X, πY :
Z→ Y, such that the triplet (Z, πZ, πY) is a directed product of X and Y in
pro-C.

Proof. For πX : Z = (Zν , rνν′ , N)→ X = (Xλ, pλλ′ ,Λ) , we put πX = (πλ, ϕ),
with ϕ : Λ → N the function given by ϕ(λ) = (λ, ϕ(λ)), and πλ : Zϕ(λ) →
Xλ the projection πXλ . If λ′ ≥ λ, we have ϕ(λ′) ≥ ϕ(λ), and by (2.1),
πλ ◦ rϕ(λ)ϕ(λ′) = πXλ ◦ (pλλ′ × qϕ(λ)ϕ(λ′)) = pλλ′ ◦ πXλ′ = pλλ′ ◦ πλ′ . Therefore

πX is a morphism of inverse systems. Analogously, we define πY = (πµ, ψ),
where ψ : M → N is given by ψ(µ) = (ψ(µ), µ), and πµ : Zψ(µ) → Yµ,

defined as πYµ : Xψ(µ) × Yµ → Yµ. Then if µ ≤ µ′, we have πµ ◦ rψ(µ)ψ(µ′) =

πYµ ◦ (pψ(µ)ψ(µ′) × qµµ′) = qµµ′ ◦ πYµ′ = qµµ′ ◦ πµ′ . Therefore πY is also a
morphism of inverse systems.

Now suppose that in category pro−C two arbitrary morphisms, represented
by the morphisms of inverse systems sX : S→ X and sY : S→ Y, are given.
We have to prove that there exists a unique morphism sZ : S→ Z in pro− C,
so that πX ◦ sZ = sX and πY ◦ sZ = sY. Suppose S = (Sk, σkk′ ,K), sX =
(sλ, θX), θX : Λ → K , sλ : SθX(λ) → Xλ, and sY = (sµ, θY), θY : M → K,
sµ : SθY(µ) → Yµ. Then we define an increasing function θZ : Λ×M → K in
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the following way: if (λ, µ) ∈ Λ ×M , consider θZ((λ, µ)) = k ∈ K an index
so that k ≥ θX(λ), θY(µ)). By this we can consider sZ = (s(λ,µ), θZ), with
s(λ,µ) : SθZ((λ,µ)) → Z(λ,µ) = Xλ × Yµ, the morphism induced by the pair of
morphisms in C

sλ ◦ σθX(λ)k : Sk → Xλ, sµ ◦ σθY(µ)k : Sk → Yµ.

Therefore the morphism s(λ,µ) satisfies the conditions

πXλ ◦ s(λ,µ) = sλ ◦ σθX(λ)k, (2.3)

πYµ ◦ s(λ,µ) = sµ ◦ σθY(µ)k. (2.4)

Now let us verify that sZ = (s(λ,µ), θZ) is a morphism of inverse systems.

Suppose that (λ′, µ′) ≥ (λ, µ). Consider k ∈ K, k ≥ k = θZ((λ, µ)), k′ =
θZ((λ′, µ′)) so that

pλλ′ ◦ sλ′ ◦ σθX(λ′)k = sλ ◦ σθX(λ)k,

which can be written as

(pλλ′ ◦ sλ′ ◦ σθX(λ′)k′) ◦ σk′k = sλ ◦ σθX(λ)k ◦ σkk.

This implies

πXλ ◦ s(λ,µ) ◦ σkk = πXλ ◦ (pλλ′ × qµµ′) ◦ s(λ′,µ′) ◦ σk′k. (2.5)

Similarly we obtain

πYµ ◦ s(λ,µ) ◦ σkk = πYµ ◦ (pλλ′ × qµµ′) ◦ s(λ′,µ′) ◦ σk′k.σk′k. (2.6)

Relations (2.5) and (2.6) imply the relation

s(λ,µ) ◦ σkk = (pλλ′ × qµµ′) ◦ s(λ′,µ′) ◦ σk′k.

Therefore sZ is a morphism of inverse systems and defines a morphism in
pro− C. In addition, by relations (2.3) and (2.4) we obtian

πX ◦ sZ = sX, πY ◦ sZ = sY. (2.7)

We now have to prove the uniqueness of the morphism sZ in the category
pro − C. Let s′Z : S → Z be an arbitary morphism in pro − C satisfying the
conditions

πX ◦ s′Z = sX, πY ◦ s′Z = sY. (2.8)

Suppose that s′Z is given by a morphism of inverse systems, (s′(λ,µ), θ
′
Z), θ′Z :

Λ ×M → K. We have to prove that s′Z = sZ in the category pro − C. This
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means that for (λ, µ) ∈ Λ ×M there exists k ∈ K, k ≥ θZ((λ, µ)), θ′Z((λ, µ))
so that

s(λ,µ) ◦ σθZ((λ,µ))k = s′(λ,µ) ◦ σθ′Z((λ,µ))k. (2.9)

By the first relation (2.8), we have that the morphisms πλ ◦ s′(λ,ϕ(λ)) :
Sθ′Z(λ,ϕ(λ)) → Xλ and sλ : SθX)λ) → Xλ are equivalent. By this we obtain a
relation

πλ ◦ s′(λ,ϕ(λ)) ◦ σθ′Z(λ,ϕ(λ))k = sλ ◦ σθX(λ)k. (2.10)

Similarly, the second relation (2.8) induces a realtion

πµ ◦ s′(ψ(µ),µ) ◦ σθ′Z(ψ(µ),µ)k = sµ ◦ σθY(λ)k. (2.11)

By (2.10) and (2.11), we obtain the relation (2.9), for (λ, µ) = (λ, ϕ(λ)) and
(λ, µ) = (ψ(µ), µ). Then by the conditions imposed on the functions ϕ and ψ,
we conclude that (2.9) is verified for all pairs (λ, µ), which implies s′Z = sZ in
pro− C. And this finishes the proof.

Remark 2.2. If the pair of inverse systems (X,Y) satisfies the condition from
Theorem 2.1, then as usual, the inverse system Z of the product X×Y does
not depend, up to an isomorphism, on the pair of functions (ϕ,ψ), or another
way to get the product.

Example 2.3. 1) For each inverse system X = (Xλ, pλλ′ ,Λ) , the pair (X,X)
satisfies the condition from Theorem 2.1, with ϕ = ψ = 1Λ.

2) Any pair of inverse systems with the same set of indices satisfies the
condition from Theorem 2.1. Particularly, this is the case of a pair of inverse
sequences.

3) Any pair consisting of an arbitary inverse system and a rudimentary
system satisfies the condition from Theorem 2.1.

4) If X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), in a category C with products,
and if (Λ,≤) is a cofinal subset of (M,≤) such that there exists an increasing
function ψ : (M,≤) → (Λ,≤), then taking the inclusion (Λ,≤) ↪→ (M,≤) as
function ϕ, the condition from Theorem 2.1 is satisfied: for (λ, µ) ∈ Λ ×M ,
there exists λ′ ∈ Λ, λ′ ≥ λ and ϕ(λ′) = λ′ ≥ µ.

5) If we have a pair (X,Y) which satisfies the condition from Theorem 2.1,
and some pro-isomorphisms f : X→ X′,g : Y → Y′, then (X×Y, f ◦ πX,g ◦
πY) is a product of X′ and Y′ as pro-objects.

Corollary 2.4. Let C be a category with products, and f = [(fµ, φ)] : X →
Y = (Yµ, qµµ′ ,M), f = [(fµ, φ)] : X → Y = (Y µ, qµµ′ ,M) be morphisms in

pro − C. If (X,X) and (Y,Y) satisfy the condition from Theorem 2.1, then
the pro-morphism f × f : X ×X → Y ×Y can be given by the morphism of
inverse systems (fµ × fµ, φ× φ).
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Remark 2.5. Suppose that X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) are two
inverse systems for each there exist some functions ϕ : (Λ,≤) → (M,≤) and
ψ : (M,≤) → (Λ,≤), satisfying the following condition: for any pair (λ, µ) ∈
Λ × M , there exists either and index λ′ ∈ Λ, with λ′ ≥ λ, ϕ(λ′) ≥ µ, or
an index µ′ ∈ M , with µ′ ≥ µ, ψ(µ′) ≥ λ. Compared to the condition from
Theorem 2.1, here we do not assume that the functions ϕ and ψ are increasing.
But, by [8] ( Ch.I, §1.2, Th.2), we can suppose that (Λ,≤) and (M,≤) are
directed cofinite ordered sets, and then by [8] ( Ch.I, §1.2, Lemma 1), there
exist increasing functions ϕ : (Λ,≤) → (M,≤) and ψ : (M,≤) → (Λ,≤) such
that ϕ ≤ ϕ and ψ ≤ ψ. Then ϕ(λ′) ≥ ϕ(λ′) ≥ µ and ψ(µ′) ≥ ψ(µ′) ≥ λ
respectively. Therefore (X,Y) satisfies the condition from Theorem 2.1 with
respect to the pair of functions (ϕ,ψ). Thus, we see that the condition from
Theorem 2.1 is somewhat less restrictive that it would seem.

3 Some products in a shape category

Let Sh(T,P) denote a shape category in the sense of Mardešić-Segal [8](Ch.I,
§2). The pair (T,P) consists of a category T and a dense subcategory P of
T which means that every object X of T has a P-expansion, that is a pro-
morphism p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) in T , with X in pro − P, so
that the following condition is satisfied : for any morphism h : X → Y in
pro − T , with Y in pro − P, there exists a unique morphism f : X → Y
in pro − P such that h = f ◦ p. Now the objects of the category Sh(T,P)

are all the objects of T, and if X,Y are two objects of T with p : X → X,
q : Y → Y, P-expansions, then a shape morphism F : X → Y is a class
of pro-morphisms f : X → Y in pro − P with respect to the relation f ∼ f ′

defined in the following way: if p′ : X → X′, q′ : Y → Y′ are P-expansions,
with some isomorphisms i : X → X′, j : Y → Y′, and f ′ : X′ → Y′, then we
have j ◦ f = f ′ ◦ i. Composition of shape morphisms F : X → Y , G : Y → Z
is defined by composing representatives f : X → Y and g : Y → Z , and
identity shape morphism 1X : X → X is defined by 1X : X → X. For every
morphism f : X → Y in T and for P-expansions p : X → X,q : Y → Y ,
there is a unique f : X→ Y in pro−P such that f ◦p = q◦f in pro−T. This
correspondence is compatible with the relation ∼, so that we can associate
with every f ∈ T(X,Y ) a shape morphism X → Y , i.e., the class of f ∈
(pro − P)(X,Y), which is denoted by S(f). If we put S(X) = X, we obtain
a covariant functor S : T → Sh(T,P), the so- called the shape functor.

Let Sh(T,P) be a shape category with T and P categories with products,
and (X,Y ) a pair of objects in category T. Then in T there exists the product
X × Y with the projections πX : X × Y → X and πY : X × Y → Y , and in
pro − P there exists the product X ×Y with the projections πX : X ×Y →
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X, πY : X×Y → Y, for p : X → X and q : Y → Y , P-expansions of X and
Y respectively (see Theorem 2.1, or more generally [2] and [3]). Then, because
the subcategory P is dense in T, there exists a P-expansion r : X×Y → ZX×Y .

Now, the morphisms πX and πY induce the pro-morphisms pro − πX :
ZX×Y → X and pro− πY : ZX×Y → Y respectively, so that

p ◦ πX = (pro− πX) ◦ r, q ◦ πY = (pro− πY ) ◦ r. (3.1)

Now, by the definition of the directed product in pro−P , there exists a unique
morphism

s : ZX×Y → X×Y,

such that
πX ◦ s = pro− πX , πY ◦ s = pro− πY , (3.2)

X

X×Y

πY

''

πX

77

ZX×Y

pro−πX

gg

pro−πY
ww

soo

Y

From relations (3.1) and (3.2) we obtain

πX ◦ (s ◦ r) = p ◦ πX , πY ◦ (s ◦ r) = q ◦ πY . (3.3)

Theorem 3.1. If the pro-morphism s : ZX×Y → X×Y is an isomorphism,
then the product X × Y in the category T is a product of the objects X and Y
in the shape category Sh(T,P), with the projections Sh(πX) : X × Y → X and
Sh(πY ) : X × Y → Y .

Proof. Suppose that Z is an arbitrary object in Sh(T,P) (i.e., Z ∈ T), and
FX : Z → X,FY : Z → Y are two shape morphisms. Let t : Z → Z be
a P-expansion of Z. Then the shape morphisms FX and FY are given by
some pro-morphisms FX : Z → X and FY : Z → Y, respectively, and these
pro-morphisms induce a unique pro-morphism F : Z→ X×Y so that

πX ◦ F = FX , πY ◦ F = FY, (3.4)
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X

X×Y

πY

''

πX

77

Z

FX

ff

FY
xx

Foo

Y

Now we compose the pro-morphism F and the pro-morphism s−1 : X×Y →
ZX×Y , which exists by hypothesis. Thus we obtain a pro-morphism

s−1 ◦ F : Z→ ZX×Y ,

which defines a shape morphism

F : Z → X × Y.

Finally, since we have the relations

(pro− πX) ◦ s−1 ◦ F = FX = πX ◦ F,

(pro− πY ) ◦ s−1 ◦ F = FY = πY ◦ F,

we deduce the reations

Sh(πX) ◦ F = FX , Sh(πY ) ◦ F = FY ,

X

X × Y

Sh(πY )
''

Sh(πX)

77

Z

FX

ff

FY
xx

Foo

Y

The uniqueness of F results from the uniqueness of F. This ends the
proof.

Corollary 3.2. Suppose in a shape category Sh(T,P), with T and P categories
with products, two P-expansions p : X → X, q : Y → Y are given. Then
if the pro-morphism p × q : X × Y → X × Y, satisfying πX ◦ (p × q) =
p ◦ πX , πY ◦ (p × q) = q ◦ πY , is a P-expansion of the product X × Y , then
(X × Y, Sh(πX), Sh(πY )) is a product in Sh(T,P) of the objects X and Y .
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Corollary 3.3. Suppose given a shape category Sh(T,P) and in the category
T two pairs (X,Y ) and (X ′, Y ′) satisfying the condition from Theorem 3.1.
If f : X → X ′ and g : Y → Y ′ are two morphisms in T , then the product
Sh(f)× Sh(g) exists and it is equal to Sh(f × g).

Proof. By Theorem 3.1, in the category Sh(T,P) there exist the products (X×
Y, Sh(πX), Sh(πY )) and (X ′×Y ′, Sh(πX′), Sh(πY ′)). Then the product of the
shape morphisms Sh(f) : X → X ′, Sh(g) : Y → Y ′ exists and satisfies the
relations

Sh(πX′) ◦ (Sh(f)× Sh(g)) = Sh(f) ◦ Sh(πX),

Sh(πY ′) ◦ (Sh(f)× Sh(g)) = Sh(g) ◦ Sh(πY ).

But by (2.1) we also obtain

Sh(πX′) ◦ Sh(f × g) = Sh(f) ◦ Sh(πX),

Sh(πY ′ ◦ Sh(f × g) = Sh(g) ◦ Sh(πY ).

Then the uniqueness of the product morphism implies the equality

Sh(f)× Sh(g) = Sh(f × g).

Using Theorem 3.1, we obtain a new proof of the following particular case
of the Keesling’ Theorem [4](Th.1.1).

Proposition 3.4. Consider the shape category Sh(Top) := ShHTop,HPol of
topological spaces ([8], Ch.I,§). Then the product in the category Sh(Top) of
two metric compact spaces X and Y is the topological product X × Y with the
shape projection Sh(πX) : X × Y → X and Sh(πY ) : X × Y → Y .

Proof. First, we recall that for any two topological spaces X and Y , with
the product (X × Y, πX , πY ), we have that (X × Y,H(πX), H(πY )) is the
product of X and Y in HTop. Thus we can assume the hypothesis expressed
in this form. Then it is known ([8], Ch.I,§5.2, Cor.4) that every compact
metric space is the inverse limit of an inverse sequence of compact polyhedra.
So, X = lim←− X, Y = lim←− Y, with X = (Xn, pnn+1) and Y = (Yn, qnn+1).
Moreover, if p : X → X and q : Y → Y are projections of inverse limit, then
Hp : X → HX and Hq : Y → HY are HPol -expansions ([8], Ch.I, §5.3,
Th.9). Now we have X×Y = (Xn×Yn, pnn+1×qnn+1), X×Y = lim←−(X×Y)
, and if r : X × Y → X×Y is the projection of inverse limit, Hr : X × Y →
H(X×Y) is an HPol-expansion of X×Y . By this we can identify the inverse
sequences X × Y and ZX×Y , and then the conclusion follows by Theorem
3.1.
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Denote by sd X the shape dimension of a topological space (see [8] Ch.II,
§1).

Corollary 3.5. If X and Y are two metric compact spaces with sd X ≤ m
and sd Y ≤ n, then sd (X × Y ) ≤ m+ n.

Proof. We use the notations from the proof of Proposition 3.4 and apply the
following characterisation of shape dimension ([8], Ch.II, §1.1, Th.2): sd X ≤ n
if and only if for an HPol-expansion p : X → X = (Xλ, pλλ′ ,Λ) and every
λ ∈ Λ, there is an index λ′ ≥ λ so that pλλ′ factors in HPol through a
polyhedron P with dim P ≤ n. Then if pλλ′ = v ◦ u, u : Xλ′ → P, v : P →
Xλ, dim P ≤ m, and qµµ′ = v′ ◦u′, u′ : Yµ′ → Q, v′ : Q→ Yµ, dim Q ≤ n, then
pλλ′ × qµµ′ = (v ◦u)× (v′ ◦u′) = (v× v′) ◦ (u×u′), and dim (P ×Q) ≤ m+n.

Proposition 3.6. Let X and Y be two metrizable or parcompact spaces such
that there exist X ′ and Y ′ metric compact spaces satisfying Sh(X) = Sh(X ′)
and Sh(Y ) = Sh(Y ′). Then (X × Y, Sh(πX), Sh(πY )) is a directed product of
the objects X and Y in the category Sh(Top).

Proof. If p : X → X,q : Y → Y,p′ : X ′ → X′,q′ : Y ′ → Y′, r : X × Y →
ZX×Y , r

′ : X ′ × Y ′ → ZX′×Y ′ are HPol-expansions, then in the pro-category
pro-HPol, there exist some isomorphisms α : X → X′, β : Y → Y′. But by
[5](Th.3.1 and Th.3.5), Sh(X × Y ) = Sh(X ′ × Y ′) holds, which implies the
existence in pro-HPol of an isomorphism γ : ZX′×Y ′ → ZX×Y , satisfying the
relations πX′ ◦ γ = αX and πY′ ◦ γ = β ◦ πY. Then with the notations from
Theorem 3.1, we obtain

(α ◦ β) ◦ s′ = s ◦ γ.

Now by Proposition 3.4, the pro-morphism s′ : ZX′×Y ′ → X′ × Y′ is an
isomorphism. And since α×β and γ are also pro-isomomorphisms, we deduce
that s : ZX×Y → X ×Y is itself an isomorphism. Then by Theorem 3.1, we
conclude that (X × Y, Sh(πX), Sh(πY )) is a product in Sh(Top) of the space
X and Y .

4 Keesling and Dydak-Mardešić examples

Keesling’s Example [4]. For this example Keesling uses the Mardešić’s
generalization of Holsztyński’s approach of the shape theory of topological
spaces [1], [6].

Let X be the set of points in the plane R2 defined by
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X = {x = ((1 + t)cos 2πt−1, (1 + t)sin 2πt−1) : 0 < t ≤ 1} ∪ {(1, 0)}.

The space X consists of ray beginning at the point z0 = (2, 0) and spiraling
to the circle x2 + y2 = 1 (not included in X) and the point z1 = (1, 0) on the
circle.

Suppose that X ×X has in Top the projection π1 and π2, and that X ×
X with Sh(π1) and Sh(π2) as projections is the product of X with itself
in Sh(Top). We prove that this is not true. For this purpose consider the
constant maps c0, c1 : X → X ,with c0(X) = (2, 0), c1(X) = (1, 0). Since X
is connected we have Sh(c0) = Sh(c1). Then we define the shape morphisms
Fi : X → X by F1 = Sh(c0) = Sh(c1) and F2 = Sh(idX). If X × X is the
product in Sh(Top)with projections Sh(π1), Sh(π2), then there is a unique
shape morphism F : X → X × X, such that Sh(πi) ◦ F = Fi for i = 1, 2.
But for F we can take both F ′ = Sh(c0 × idX) and F ′′ = Sh(c1 × idX)
, since Sh(π1) ◦ F ′ = Sh(π1 ◦ (c0 × idX)) = Sh(c0) = F1, Sh(π2) ◦ F ′ =
Sh(π2 ◦ (c0 × idX)) = Sh(idX) = F2, Sh(π1) ◦ F ′′ = Sh(π1 ◦ (c1 × idX)) =
Sh(c1) = F1, Sh(π2) ◦ F ′′ = Sh(π2 ◦ (c1 × idX)) = F2. And we can prove
that F ′ 6= F ′′. For this we consider X ordered by the linear order induced by
the parameter t and (1, 0) ≤ x for all x ∈ X. Then we define the continuous
map g : X × X → X, by g(x, y) = min{x, y} with this order. Now we have
Sh(g) ◦ F ′ = Sh(g) ◦ Sh(c0 × idX) = Sh(idX) and Sh(g) ◦ F ′′ = Sh(g) ◦
Sh(c1 × idX) = Sh(c1). But we observe that X does not have trivial shape
since there is a map f : X → S1 which is not null homotopic. Therefore
Sh(g) ◦ F ′ 6= Sh(g) ◦ F ′′ which implies F ′ 6= F ′′. We can conclude that
(X ×X,Sh(π1), Sh(π2)) it’s not a product in Sh(Top).

Dydak -Mardešić example [10]. In [10] is proved that the Cartesian
product X × P of the dyadic solenoid X and the wedge P = P1 ∨ P2 ∨ ... of
a sequence of 1-spheres is not a product in the shape category of topological
spaces Sh(Top).

The dyadic solenoidX is the limit of the inverse sequence X = (Xn, pnn+1,N)
with Xn = S1 = {ζ = e2πit|0 ≤ t ≤ 1} and pnn+1(ζ) = ζ2, and with the
canonical projection pn : X → Xn the map pn(ζ1, ζ2, ...) = ζn, n ∈ N.

The space P is obtained from the coproduct q∞n=1Pn, Pn = S1, by identi-
fying all the base points 1 ∈ S1 in the various summands Pn to a single base
point ∗ of P .

Now for any fixed point x ∈ X is defined hx : P ↔ X × P by hx(t) =
(x, t), t ∈ P . Then is proved that for an arbitrary choice of points x, x′ ∈ X,
the mappings h = hx, h′ = hx

′
satisfy the conditions

(1) Sh[πX ]Sh[h] = Sh[πX ]Sh[h′],
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(2) Sh[πP ]Sh[h] = Sh[πP ]Sh[h′].

Finally it is proved that there exist points x, x′ ∈ X such that h = hx, h′ =
hx

′
satisfy the condition

(3) Sh[h] 6= Sh[h′].

The idea is the same as for Keesling’s example but the proof is more com-
plicated. Is defined a mapping q : X × P → Q, where Q is a CW-complex
obtained starting from X and P . For this map is provided that there exist
points x, x′ ∈ X such that qhx 6= qhx

′
. Then, since Q is a CW-complex, we

obtain relation (1)-(3) for h = hx and h′ = hx
′
.

Based on these examples and using 3.1 and Continuity Theorem ([8], Ch.I,
§2.3, Theorem 6 and Remark 13), we can state the following result:

Corollary 4.1. In the category Sh(Top) there exist inverse limits X = lim←−X
, Y = lim←−Y such that

X × Y � lim←−(X×Y).
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