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On elliptic curves with a closed component
passing through a hexagon

Miroslav Kureš

Abstract

In general, there exists an ellipse passing through the vertices of
a convex pentagon, but any ellipse passing through the vertices of a
convex hexagon does not have to exist. Thus, attention is turned to
algebraic curves of the third degree, namely to the closed component of
certain elliptic curves. This closed curve will be called the spekboom
curve. Results of numerical experiments and some hypotheses regard-
ing hexagons of special shape connected with the existence of this curve
passing through the vertices are presented and suggested. Some prop-
erties of the spekboom curve are described, too.

1 Introduction

In many practical applications, we need to find a curve passing through given
points. There are also known procedures for a construction of a curve, for
example, from its raster image: see the situation for the ellipse described by
J. Hrdina and J. Pavĺık in [3]. So-called Hough transform was introduced in
image processing for the automatic detection of straight lines in images. The
idea behind this computational tool is that, in a typical parametric represen-
tation, a straight line is uniquely represented by a pair of parameters: the
slope and the intercept. Therefore a point on a straight line in the image
space is projected into a straight line in the parameter space, and the whole
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straight line in the image space is projected into a single point in the param-
eter space: this is the intersection point of all projected straight lines. In the
paper [2] of M. C. Beltrametti, A. M. Massone and M. Piana the generalized
method is used for the automated recognition of rational cubic, quartic, and
elliptic curves. The accuracy of this approach is tested against synthetic data
and in the case of experimental observations provided by the NASA Solar
Dynamics Observatory mission. It is interesting that elliptic curves are rec-
ognized in images of the solar corona and cromosphere in the ultraviolet and
extreme ultraviolet wavelengths (on data provided by Solar Dynamics Obser-
vatory SDO), see [2]. An interesting occurrence of elliptic curves in the natural
sciences is also described in G. S. Kopp’s paper [4], which states that linear
wave solutions to the Charney-Hasegawa-Mima partial differential equation
with periodic boundary conditions have two physical interpretations: Rossby
(atmospheric) waves, and drift (plasma) waves in a tokamak. These waves
display resonance in triads. Primitive resonant triads are identified as rational
points on a rational elliptic surface having elliptic curves as fibers.

In our research, we will deal with simple closed curves, and we will not
leave elliptic curves at the same time. How do we get to this point of view?

When viewing simple closed curves, let us restrict ourselves to algebraic
curves. It is well known that there is a suitable second degree curve, an ellipse
with the equation

k(x− a)2 + l(y − b)2 = 1,

where a, b, k, l ∈ R, k > 0, l > 0 ([a, b] is the center of the ellipse and 1√
k

, 1√
l

its semi-axises.).
It is not difficult to generalize this notorious example. An elementary way

can be, for example, by a taking of the fourth degree curve

k(x− a)4 + l(y − b)4 = 1,

where a, b, k, l ∈ R, k > 0, l > 0, or, more generally, every curve of an even
order of the form ∗

k(x− a)2n + l(y − b)2n = 1,

a, b, k, l ∈ R, k > 0, l > 0, n ∈ N.

∗i.e. even order superellipses first discussed by Gabriel Lamé in 1818
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Figure 1. Closed curves k(x− a)2 + l(y − b)2 = 1 and
k(x− a)4 + l(y − b)4 = 1, where a = b = 0, k = 1

49 , l = 1
25 .

A more refined and sophisticated method is the perturbation of the curves.
The idea is to take the union of two curves, and then slightly modify this union
to get an irreducible smooth curve. Let us take for example the ellipse

1

49
x2 +

1

25
l(y − b)2 − 1 = 0

and the line
y − 5 = 0.

We obtain the equation(
1

49
x2 +

1

25
l(y − b)2 − 1

)
(y − 5) = 0

which is a cubic curve. Now, we take instead the equation(
1

49
x2 +

1

25
l(y − b)2 − 1

)
(y − 5) = t

with small positive t. See the figure below, where we have a ”new” cubic curve
with two components, where one compoment is simple and closed.
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Figure 2. Cubic curves
(

1
49x

2 + 1
25y

2 − 1
)

(y − 5) = 0 and(
1
49x

2 + 1
25y

2 − 1
)

(y − 5) = 1
4 .

In particular, if we focus on ellipses, we recall the fundamental result of
M. Agarwal, J. Clifford and M. Lachance.

Theorem 1. ([1]) Inscribed ellipses in convex non-degenerate n-gons:

(i) In triangles there exists a unique two-parameter family of inscribed el-
lipses.

(ii) In quadrilaterals there exists a unique one-parameter family of inscribed
ellipses.

(iii) In pentagons there exists precisely one inscribed ellipse.

(iv) For n ≥ 6, there exist n-gons for which there are no inscribed ellipses;
whenever there is an inscribed ellipse, it is unique.

Next, we will deal with other cubic curves, namely elliptic curves. However,
we will not get the result of the quality of the previous theorem, but our work
will highlight some phenomena important for further research.

2 The elliptic curve and the spekboom curve

2.1 The elliptic curve we are considering

We start with the elliptic curve of a form

(y − d)2 = k(x− a)(x− b)(x− c) (1)
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where a, b, c, d ∈ R, k ∈ R+, a, b, c mutually different, so without loss of
generality, we may assume a < b < c.

We use the linear transformation

x =
1
3
√
k
x̄+

1

3
(a+ b+ c)

y = ȳ + d

and obtain the usual equation of the elliptic curve

ȳ2 = x̄3 + px̄+ q

where

p =
3
√
k2

3

(
ab+ ac+ bc− a2 − b2 − c2

)
q =

k

27
(a+ b− 2c) (a+ c− 2b) (b+ c− 2a) .

The discriminant is

−16(4p3 + 27q2) = 16k2(a− b)2(a− c)2(b− c)2

what is evidently positive just as it should be for a non-singular elliptic curve
having two components. One component is unbounded and the second one is
bounded and closed.

To get a completely general form, we apply a rotation

x = x̄ cosϕ− ȳ sinϕ

y = x̄ sinϕ+ ȳ cosϕ

to the equation (1). We obtain

(x̄ sinϕ+ ȳ cosϕ− d)2 =

k(x̄ cosϕ− ȳ sinϕ− a)(x̄ cosϕ− ȳ sinϕ− b)(x̄ cosϕ− ȳ sinϕ− c) (2)

what is an equation with six parameters a, b, c, d, k and ϕ ∈ [0, 2π).
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Figure 3. The elliptic curve with a = −2, b = 1, c = 2, d = 1, k = 1
2 and the

same once again after the rotation with ϕ = π
4 .

This equation can be transformed into the form

(x̄
√

1− f2 + ȳf − d)2 =

k(x̄f − ȳ
√

1− f2 − a)(x̄f − ȳ
√

1− f2 − b)(x̄f − ȳ
√

1− f2 − c) (3)

or

(−x̄
√

1− f2 + ȳf − d)2 =

k(x̄f + ȳ
√

1− f2 − a)(x̄f + ȳ
√

1− f2 − b)(x̄f + ȳ
√

1− f2 − c), (4)

where f ∈ [−1, 1].

2.2 Curves going through points of a hexagon

Let us present an example. We consider points P1 =
[
−4, 52

]
, P2 [−3,−1],

P3 =
[
−2, 72

]
, P4 = [0,−4], P5 = [ 72 ,

11
4 ], P6 = [5,− 11

2 ].
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Figure 4. Points Pi, i = 1, . . . , 6.

After substituting of points, we obtain systems of non-linear equations
from (3) or (4), respectively, which is impossible to solve exactly in general.
So the problem must meet some approximation techniques. In our example,
we have calculated the following numerical solutions:

a b c d k f ϕ

−4.05332 1.47818 3.13247 −0.529174 3.18868 −0.973143 2.90931

−3.78232 4.13993 6.84562 3.57652 0.597016 −0.331282 1.90846

−3.76259 2.27353 3.99177 −0.194822 0.385188 0.0619459 1.50881

−8.48145 4.70739 14.0004 −0.288162 0.0209834 −0.880181 3.63614

−3.03541 4.6292 4.73846 −1.36848 0.538664 0.666438 5.44181

Graphically,
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Figure 5. Elliptic curves of the form (3) going through the given points.
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In order to decide whether (all) points lie on the closed component of the
curve or not, we apply the reverse rotation

x̄ = x cos(2π − ϕ)− y sin(2π − ϕ)

ȳ = x sin(2π − ϕ) + y cos(2π − ϕ)

for the curve and the points, too. If (all) x-coordinates of points are less then
the highest root of the cubic polynomial representing the right hand side of
the elliptic curve, then the answer is positive.

Definition 1. Let us consider six points forming a convex non-degenerate
hexagon. If an elliptic curve (3) is passing through these six points in such
a way that k points (0 ≤ k ≤ 6) lie on a closed component, we call it the
k-cohesive location of points on the elliptic curve.

Proposition 1. There exist convex non-degenerate hexagons possessing n 6-
cohesive locations of points on the elliptic curve passing through their rational
vertices, for n = 0, 1, 2, 3.

Proof. We present examples of solutions meeting the requiered condition. To
save space we do not give pictures here.

(i) (no 6-cohesive location:) points P1 = [−6,−4], P2 =
[
−6, 34

]
, P3 =[

−2, 72
]
, P3 =

[
−2, 72

]
, P4 = [0,−4], P5 =

[
7
2 ,−

15
4

]
, P6 =

[
7
2 ,

11
4

]
.

(ii) (one 6-cohesive location:) P1 =
[
− 13

2 ,
1
4

]
, P2 =

[
−6,− 1

4

]
, P3 = [−2, 2],

P4 = [0,−2], P5 =
[
7
2 ,

5
4

]
, P6 = [6,−1].

(iii) (two 6-cohesive locations:)P1 =
[
− 13

2 ,
1
4

]
, P2 =

[
−6,− 1

4

]
, P3 =

[
−2, 274

]
,

P4 = [0,−2], P5 =
[
7
2 ,

13
4

]
, P6 = [6,−1].

(iv) (three 6-cohesive locations:) P1 =
[
−4, 52

]
, P2 = [−3,−1], P3 =

[
−2, 72

]
,

P4 = [0,−4], P5 =
[
7
2 ,

11
4

]
, P6 =

[
5,− 11

2

]
.

The algorithm for finding curve equations and for an eventual decision about
n-cohesiveness using the reverse rotation has already been described.

Proposition 2. There exist convex non-degenerate hexagons possessing a k-
cohesive location of points on the elliptic curve passing through their rational
vertices, for k = 4, 5, 6.

Proof. Analogously to the proof of the previous proposition, we will write an
appropriate positioning of the points for particular cases when locations occur.

(i) (4-cohesive location:) points P1 =
[
−4, 52

]
, P2 [−3,−1], P3 =

[
−2, 72

]
,

P4 = [0,−4], P5 = [ 72 ,
11
4 ], P6 = [5,− 11

2 ].
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(ii) (5-cohesive location:) points P1 =
[
− 13

2 ,
1
4

]
, P2 =

[
−6,− 1

4

]
, P3 =[

−2, 274
]
, P4 = [0,−2], P5 =

[
7
2 ,

13
4

]
, P6 = [6,−1].

(iii) (6-cohesive location:) points P1 =
[
−4, 52

]
, P2 [−3,−1], P3 =

[
−2, 72

]
,

P4 = [0,−4], P5 = [ 72 ,
11
4 ], P6 = [5,− 11

2 ].

Remark 1. There is important in previous propositions that we are talking
about rational points. † In particular, it is not sufficient to take an elliptic
curve and choose six arbitrary points on it, with a suitable amount of points
on its closed component and to show that these can form a non-degenerate
hexagon.

Definition 2. The connected component of the elliptic curve in question will
be called the spekboom curve. (This is because its shape may resemble the
leaves of the plant Portulacaria afra known as spekboom in Afrikaans.)

Figure 6. Leaves of Portulacaria afra (spekboom).

3 More on hexagons

First of all, let us note that a set of six (different) points is not determining the
particular hexagon. It is essential which point follows which, so we need an

†Of course, there are connections with classical problems of an existence of rational points
on a curve, for example: if p is a prime number congruent to 1 modulo 4, then there exist
natural numbers x and y satisfying p = x2+y2 and conversely, for a prime number congruent
to 1 modulo 3 there do not exist rational numbers x and y satisfying this equation.
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ordered set of six points. However, we are only concerned with non-degenerate
convex hexagons, i.e. such that three vertices never lie on the same line and
all inner angles are from the interval (0, π). In that case, we do not need the
ordering of the points, as it is shown in the following statement.

Proposition 3. Let Pi, i = 1, . . . , 6 are points in plane such that there is
a non-degenerate convex hexagon H having Pi as vertices. Then there is no
non-degenerate convex hexagon having Pi as vertices which is different from
H.

Proof. If six points in plane determine a non-degenerate convex hexagon H,
then H is nothing but the convex hull Pi, i = 1, . . . , 6. The convex hull is
always unique.

Figure 7. Examples of convex hexagons. A general hexagon, an elliptic
hexagon, a right parallelo-hexagon.

3.1 Elliptic hexagons

By an elliptic hexagon, we mean a non-degenerate convex hexagon having all
vertices on an ellipse. We remark that the property ”non-degenerate convex”
is, by having all points on an ellipse, already enforced. The special case is the
circle hexagon having all vertices on a circle.
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Numerical experiments show that even for elliptic hexagons could occur all
the cases described in Propositions 1 and 2. However, they also give rise to
the following hypothesis:

Conjecture 1. There is no elliptic curve passing through the vertices of a
circle hexagon.

3.2 Right parallelo-hexagons

By an parallelo-hexagon, we mean a hexagon with opposite sides equal and
parallel (see the paper [5] of M. de Villiers). As above, we consider only
convex parallelo-hexagons. By a right parallelo-hexagon, we mean a convex
parallelo-hexagon with two right inner angles and such that the sides forming
the right angle are of the same length.

We denote the sides forming the right angle by u and the remaining two
sides by v. Furthermore, we denote by γ the angle as is shown on the figure.
In general, we should assume that γ ∈ (0, π2 ), however, we just suppose that
γ ∈ (0, π4 ] a hexagon with γ ∈ (π4 ,

π
2 ) is transformable on another with γ ∈

(0, π4 ) by one reflexion.

Figure 5. The right parallelo-hexagon.

Put the left lower vertex at the origin of the coordinate system and the sides
a of the hexagon in alignment with the coordinate axes. Then the vertices of
the right parallelo-hexagon are [0, 0], [u, 0], [u+v cos γ, v sin γ], [u+v cos γ, u+
v sin γ], [u cos γ, u+ v sin γ], [0, u].

Proposition 4. There exist right parallelo-hexagons having infinitely many
spekboom curves going through their vertices.
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Proof. It is sufficient to show an example. Let u = 1, v = 1
5 , γ = π

4 . Then
the solution of (3), resp. (4) is one-parameter family from which one can
obtain a particular solution by a specification of the parameter value: we can
do so for the parameter k. Several values can be seen in the figure below.

Figure 8. Spekboom curves of the right parallelo-hexagon with u = 1,
v = 1

5 , γ = π
4 .

4 Properties of the spekboom curve

Of course, there is no closed algebraic curve of the first degree. However, poly-
gons, which are actually algebraic polynomials of the first degree ”in parts”,
are studied extensively. Knowledge about circles ellipses as closed algebraic
curves of the second degree are familiar for secondary school pupils.

However, the component of the closed curve of the third degree, which we
are considering, is actually almost unnoticed until now. We write some of its
elementary properties in this section. It is well-known that nonsingular elliptic
curves admit no rational parametrization (by uniformization theorems), so we
continue with the implicit equation. It suffices to consider a simplified equation
of the form

y2 = kx(x− a)(x− c), x ≤ 0, a < 0 < c, k > 0, (5)

i.e. we take in d = 0 and b = 0 in (1). Moreover, we will consider the case
with k = 1, a = −1

y2 = x(x+ 1)(x− c) x ≤ 0, c > 0, (6)
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as our most special case. Easy analysis leads us to the following results.

Figure 9. The spekboom curve with the marked point Q in its largest
width.

Proposition 5. The point of the largest width of the spekboom curve (5) is

Q =

[
a+ c− U

3
,

√
k (a+ c− U) (2a− c+ U) (2c− a+ U)

3
√

3

]
;

U =
√
a2 − ac+ c2, in particular, for (6) it is

Q =

c− 1− Ū
3

,

√(
c− 1− Ū

) (
−c− 2 + Ū

) (
2c+ 1 + Ū

)
3
√

3


Ū =

√
1 + c+ c2, and this case has limit values

Q0 =

[
−2

3
,

2

3
√

3

]
(for c→ 0+) and Q∞ =

[
−1

2
,∞
]

(for c→∞).

(If c goes to infinity, the spekboom curve becomes symmetrical and approaches
the ellipse with the infinite vertical half-axis.)

Proof. Nothing but direct verification by usual differential calculus.

We finish the paper with the basic property of differential geometry of
curves, which is curvature.
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Proposition 6. The curvature in the point [−1, 0] of the spekboom curve (6)
is

κL =
2

c+ 1
,

i.e. κL = 2 for c→ 0+ and κL = 0 for c→∞ and the curvature in the point
[0, 0] of the spekboom curve (6) is

κR =
2

c
,

i.e. κR →∞ for c→ 0+ and κR = 0 for c→∞.

Proof. We compute the curvature using the formula

κ =
−(F ′y)2F ′′xx + 2F ′xF

′
yF
′′
xy − (F ′x)2F ′′yy(

(F ′x)2 + (F ′y)2
) 3

2

for an implicit curve F (x, y) = 0.

Now, we can easily construct the osculating circles with the radius equal
to the multiplicative inverse of the curvature.

Figure 10. The spekboom curve (6) with c = 1
10 and with osculating circles

in [−1, 0] and [0, 0].
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