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Mixed problem for quasilinear hyperbolic
system with coefficients functionally dependent
on solution
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Abstract

The mixed problem for quasilinear hyperbolic system with coeffi-
cients functionally dependent on the solution is studied. We assume
that the coefficients are continuous nonlinear operators in the Banach
space C'(R) satisfying some additional assumptions. Under these as-
sumptions we prove the uniqueness and existence of local in time C*
solution, provided that the initial data are also of class C*.

1 Introduction

Since the beginning of 70-thies of the last century the Hall effect thrusters are
more and more often used in the space technology not only for the correction
of the satellites orbits but also as the marching engines in the space missions.
Therefore one observes also a violent development of the theoretical studies of
Hall thrusters. Although the physics laying behind the construction of such a
thruster seems to be simple, there are still important problems and questions
which are not yet solved. The rarified neutral gas, usually Xenon, moving
through the chamber (a space between two concentric ceramical cylinders) is
ionized by collisions with electrons. Neutral gas is released from appropriate
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orifices in the anode - the bottom of the chamber, whereas the pimary elec-
trons are produced by the hollow cathode located outside, near the other end
(exit) of the chamber. The generated electric field between the anode and the
cathode, practically parallel to the axis of chamber is accelerating heavy ions.
To have a reasonable thrust, the motion of electrons in the axial directions
must be greatly reduced. Otherwise the most of energy from the electric field
would be directed to electrons. Therefore a radial magnetic field (perpendic-
ular to the axes of cylinders is applied. As a result, because of the Hall effect,
the electrons are subject mainly to the azimuthal motion (Hall current). The
motion in the axial direction is of the diffusion type due to collisions of elec-
trons with atoms and the ceramic walls of the channel. One observes also
anomalous diffusion caused by the fluctuations of the electric field (plasma
turbulence). In the same time the magnetic field is too weak to influence the
motion of very heavy ions. In case of Xenon we have :':TL ~ 1072,

The simplest description of plasma discharge in the Hall thruster is based
on the 3-fluid model consisting of the fluid of neutral atoms, ions and electrons
[1]. The simple geometry allows also to account only for one space variable,
assuming cylindrical symmetry and homogeneity of plasma along the radial
direction. The distribution of the electric field is dependent on the charge
distribution in the chamber and in principle it is governed by the Poisson
equation for the electric potential. However typically we have % ~ 107°.
This creates serious difficulties for numerical determination of the particle den-
sities and the electric field. Small errors in the densities leads to large errors in
the electric field. This influences the motion and the densities, so the numer-
ical procedure becomes very unstable. The quasineutrality of plasma n. =~ n;
permits to determine with a good accuracy the electric field by assuming that
ne = n; and neglecting the Poisson equation. This is common procedure in
plasma physics. More precisely assuming in the electron and ion momentum
equations n. = n; and neglecting the inertial forces in the electron momentum
equations one arrives at the Ohm type of equation relating the electric field,
electron axial velocity and the gradient of the electron temperature. By the
ion and electron continuity equations the plasma neutrality implies that the
electric current density I = en;(V; — V¢) is independent of the spatial variable
x. So it may depend only on time I = I(t). Clearly this can be true as long
as the time derivatives of n. and n; can be considered as equal.

After inserting so determined electric field to the ion momentum equation
one arrives at the following system

e continuity equation for the neutral atoms

ON,  O(N,V,)
+ _ — 7

ot or ~ PNen (1)
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e continuity equation for ions
on;  O(Vin,
3 0 N, @)

ot ox

e ion momentum equation

%-FV%-FLE %n. EY !
ot YOr  n;0x \m; ) eff n; e

e clectron temperature equation

3 3
n; 8 T@E 6 TE
e - Q.
VT, 8t<ni>+ &T(nz) @
I
‘/e = ‘/2 - )
n;e
Ng
Q = _B (’YeEion + §k:re - Eke)
k 2
2 m ew
+ 2 B = 2 (Eye + 2KT.) — BN

where the total current density I is given by the functional

I(t) = (/Ol ”;;Z"m)

The characteristics of the system (1) - (4) have the following slopes:

SkT, SkT, 1
= G=Vit = a=Ve=Vi-

—Vv Vv _
& o & ! 3m; 3m; n;e

It is known that & > 0, &5 > 0, & < 0.

l
e 1 0 (KT,
—U effVit —5= | —mni | | dx| .
m; 0+/0 (fo +ni8x(min>) x]

_ v;) LBNL(Va—Vi) (3)

(6)

(7)

As will be shown Egs. (1) - (4) form the hyperbolic system. The total current
density I is given by (7), therefore both sides of this system depend functionally

on the solution.
Besides the initial condition (x € [0,1]):

Ny (0,2) = Nyo(z), n:(0,2) = nio(x), Vi(0,2) = Vig(z), Te(0,2) = Teo(z),

we assign also the boundary conditions. Neutral atoms are moving with the

constant velocity V,. Hence one may think that the ions originated

close
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to the anode should have the same velocity. In such a case the boundary
condition on the anode would be in the form V;(¢,0) = V,. Since in reality

5kTe

there is V, < B therefore in this case £ < 0 for z = 0 and the boundary

conditions for system (1) - (4) should be N,(t,0) = N(t), V;(¢t,0) = V,,
T.(t,1) = TS (t). However, the physical considerations show that in most cases
close to the anode, because of the excess of electrons, the anode layer (the
sheath) with the reversed electric field is formed. As a result, at the edge of
this layer the ions are moving towards the anode with so called Bohm velocity

Ve =4/ ’g <. Consequently, we assume that in this case on the anode (z = 0)

we have V;(t,0) = —/%L=. The number (two) of the boundary conditions on

the left boundary is equal to the number of families of characteristics entering
the rectangle from the left. Similarly, we only need one boundary condition on
the right-hand side, because only &, is negative there. The thruster is drafted
in a such way that outflow is strongly supersonic close to the channel exhaust

3
[0,T] x [0,1] - it is negative in the vicinity of anode ({2 < 0 for x = 0) and
positive at the end of the channel (§&2 > 0 for x = [). For this reason the
second characteristic leaves the left as well as the right boundary and we do
not assume any boundary condition related to this characteristic i.e. &s.
We also assume the following consistency conditions that assert continuity
of a solution of the considered system:

N:(O) = NaO(O)a
N'(0) + (NaoVa)'(0) = —BNao(0)m0(0),

Vi > 1/%). Therefore the eigenvalue &; changes sign in the interior of

Teo(l) = T£(0),

0 S

(= Viomao) @) + BN (Dnio(1) ) + Ve(0.1/TLo (1)

V0D 3ty = SQ0.D,

Vio(0) = —\/—kT;j_(O)7

k - / k / % eO(O)n/iO(O) .
4miTeO (O) Teﬂf(oa 0) + ‘/;0 (0) 7.0(0) + m; TeO (0) + niO(O) -

- (nfo((%))e - 1-0(0)) T BN (0)(Va — Vio(0), (8)
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where in (8) there is

7.40,0) = T (= (Viana (0) + BNoa(Omin(0)) = Ve(0.0/720)

2T€O (0)

V0.0 3140(0)

a(0) + 2Q(0,0).

2 Formulation of the problem

Let Xy, X7 be the Banach spaces

Xo

u € C([0,1], R™); ||ullo :=

X1 = {ue([0,0,R"); lully = flullo + |

Ugllo < 00}

and let B! (u") be a closed ball of radius r, centered at u® in X;. We will be
concerned with the general quasilinear hyperbolic system of the form

wy + Alulu . = blul, (9)

that coefficients are the operators on u. The system (9) is suplemented by the
initial condition
u(0,z) = u’(z), = €]0,l], (10)

and boundary conditions defined below.

We confine ourself to the functional dependence with respect to the variable
x only. Thus in Afu], b[u] and Dlu|, Lu], R[u] (that is defined below), u is
treated as a function of z, parametrically dependent on t. Similarly we admit
that the operators A, b and D, L, R are parametrically dependent on t. We
assume also that for a given u from a closed ball B}(u"), the matrix Afu]

(t € [0,7)) has real eigenvalues & [u],...,&,[u] and can be diagonalized [8],
[10]:
Alu] = R[u]D[u]L[u], where R=L""
Ly [u]
Dlu] = diag[&1[ul, . .-, &nlull,  Llu] = :
L, [u]

The rows of the nonsingular matrix L[u] are the left linearly independent eigen-
vectors of Afu] and the columns of R[u] = L™1[u] are the right eigenvectors of

Alu).
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For any function u belonging to the closed ball B} (u°) and (¢,z) € [0, 7] x
[0,1] we assume that there are my characteristics entering the rectangle [0, T] x
[0,1] from the left side and ma —m4 characteristics entering [0, 7] x [0, ] from
the right-hand side:

&lul(t,0) > 0, i=1,...,m
&lul(t,l) < 0, i=m1+1...,mq, me < n.
The rest of the eigenvalues of the matrix Afu], i.e. &[u] for i =mgo+1,...,n,

satisfy the conditions
&lul(t,0) <0 for te€[0, 7] or &lul(t,00=0 for te[0,T],

&lul(t,1) >0 for t€[0,T] or &ul(t,l)=0 for tel0,T].

It means that the characteristic belonging to the i-th family, for ¢ = mqy +
1,...,n do not enter the rectangle through the latteral boundaries of [0, 7] x
[0,1] but they can leave it.

We assume that the lines x = 0 and x = [ are not the characteristics.
Consequently we assume my conditions on the boundary x = 0:

F;(t,u(t,0) =0, j=1,...,m, (11)
and my — my conditions if z = I:
F](t,u(t,l))zo, ]:ml—l—l,,mg (12)

It is required that F; € C'(R"™!), j = 1,...,my and are bounded together
with their derivatives.
Multiplying (9) on the left by L[u], we obtain the characteristic form of equa-
tions

L{u] uy + D]u] L[u] uy = L[u] bu]. (13)

2.1 Initial-boundary value problem

Let u%(z) be an initial condition (10) for the system (9). We will assume that
there exist a closed ball Bl(u?) in X; such that for all ¢ € [0, 7] the following
conditions hold:

(A1) K : BX(u®) — X; and for some constant ¢ < oo: ||K[v][1 < ¢ for all
v € B} (u®), where K denotes L, R, D, b.

(As) L is a continuous nonlinear operator, L : B}(u®) — X;. In addition we
assume that L is Fréchet differentiable and 3.50Vyep1w0) | L/ [v][lo < ¢
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(A3) L[v]is of C* class with respect to the parameter ¢ and there is a constant
¢ such that || ZL[v]|jo < ¢, v € BL(u®). *

(A4) For any ¢ > 0 and |z — Z| < 0 there is a constant ¢ and a function N (9),
N(8) — 0 as § — 0 such that for all v € B}(u) there is

5, 9]
Il _ 7)| < _ 7
azK[v](t,ac) 8xK[U](t7m) < clvg(z) — v (Z)| + N(6),
for fixed t € [0,T]. Here K stands for L, D,b. | -| denotes the Euclidean

metric.

(A5) There exists a constant ¢ that ||K[v] — K[0]|lo < c|jv — 9]¢ for v,0 €
Bl(u°), where K stands for L, R, D, b.

We also assume the following consistence conditions (that assert continuity
of solution and its derivatives):

e the consistence condition for the initial condition at z =0 and z = [

F;(0,u°(0)) = 0, j=1,...,m,
FJ(OvuO(l)) = Oa j:m1+17""m27
e the consistence condition for the derivatives
for j=1,...,my
n
Fia00(0) + Y- B 0:0°(0) - (0a7100) ~ ALI(0) u2(0)) =0,
i=1 i
for j=m1+1,...,mo

Fia0(0) + Y- Fy 0000 - (3100~ AL°Y0) 02)) =0,

Let we denote the column vectors F := [Fili=1,....m1> F = [Filiz=mi+1,...ma2s
and the matrices consisted of the elements of R: [R;;] i=1,...n , [Rij]  i=1....n
j=1...,my j =

Then for x = 0 we require:

det (Fyu[Rij} ..... . ) £0, (14)

=1
j=1...,mq

*The derivative in (A3) is the partial derivative with respect to ¢ for the mapping (¢,v) —
L[v], where (t,v) € [0,T] x BL(u®) (function v is independent of t). If u = u(t, x), then we
r p

write the partial derivative of the operator L with respect to ¢ in u as (%L) [u], hence

(%L) [u] = %L[v]‘ . In the other hand % (L[u]) is a sum of the partial derivative
v=u

(%L) [u] and the Fréchet derivative L’[u] acting on w ¢: % (L[u)) = (%L) [u] + L' [u]u.
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and for z =1

det (EU[RM] - 2)#0, (15)

j=mi+1...,m

where F,, means the matrix [gf’f] .
J =

OF;
Ouj | i=mq+1,..., mo

j=1,...,n

) and analogously F « 1S the matrix

J ) )
When we consider the prolonged system, the above two conditions will enable
us to calculate appropriate invariants on the boundary.

Theorem 1. Under the conditions stated above, there exits a local in time,
unique solution of class C of the problem (9) - (10), (11) - (12).

The proof of the theorem basis on the reasoning contained in [11]. It is
worth pointing out that many results for quasilinear hyperbolic systems have
been studied in [2], [3], [4] [5], [6], [7]-

3 Characteristics

The proof of Theorem 1 we begin with the definition of characteristic.

Definition 1. The characteristic curve © = x(t;t,%) of the k-th family com-
ing to the point (t,Z) is the solution of the problem

dx

E = gk[u](tvx)v te [O’ﬂ’ (16)

ri(t; 1, 7)| = = . (17)

For u € B} (u°) the function & [u](t, z) is bounded and has bounded deriva-
tive with respect to x. Hence it satisfies the Lipschitz condition with respect
to x and therefore initial problem (16)-(17) has a unique solution (by Picard’s
theorem). Through each point (¢,z) € [0,7%] x [0,{] (T* < T is given below
by (32) on the page 227) there passes one and only one characteristic of the
k-th family, which is defined for ¢ € [0,T*].

Now we define the characteristics starting from the points (0,0) and (I,0).
Let © = ®;(t), i = 1,...,m; be a solution of the problem % = &[u](t,z),
®,(00 =0,¢=1,...,my, and © = P;(t), ¢ = my + 1,...,ma, be a solu-
tion of the problem 4 = &u](t,z), ®;(0) =1, i = my + 1,...,my. Char-

L ar =
acteristic x = x;(¢t;¢,%), i = 1,...,mo is continuously differentiable function
with respect to ¢ and moreover i = &ul(t,z) > 0 for i = 1,...,m; and

i = &[u](t,x) < 0fori =mq+1,...,mo in the rectangle [0,7] x [0,]. From




MIXED PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEM WITH
COEFFICIENTS FUNCTIONALLY DEPENDENT ON SOLUTION 223

the equation 0 = z;(¢;t,%), i = 1,...,my we can (using implicit function the-
orem) uniquely calculate ¢ as ¢ = o4(f,Z). For i = 1,...,my it is the time
for which the characteristic passing through the point (¢,z), where T < ®,(t),
crosses the boundary x = 0. For ¢ = my + 1,...,ms it is the time for which
the characteristic passing through the point (¢,Z), where Z > ®,(t), crosses
the boundary =z = [.

Function o;, ¢ = 1,...,my is continuous in the rectangle [0,7] x [0,] and
zi(0i(t,z);t,) = 0. Besides 04(t,0) = ¢ for s = 1,...,my and o;(t,1) = ¢
for i = my +1,...,ma. Let us noticed that the characteristic x = ®,(¢),
i = 1,...,mg divides the rectangle [0,7T] x [0,!] into two parts and in each

part the solution is determined in a different way. Define sets

GPiT = {(tvx) € [O’T] X [Oal] x 2 (I)i(t)}a
GbiT = {(t,l‘) S [O,T] X [0,[] < (I)i(t)},

X
|
0 X /
Figure 1: Example of Gpir and Gyip for i = 1,...,m;.
e i =m;+1,...,m9
GpiT = {(t71') € [OvT] X [Oal] TS (I)l(t)}’
Guir = {(t,x) €]0,T] x[0,1] : = > ®;(¢)},
e i=mo+1,....,n
GpiT = [O,T] X [0,[],

Guir =
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4 Prolonged system

Let us define the prolongation of system (9) which will help us to estimate the
growth of solution of system (13) as well as its derivatives.
We introduce the new unknown vector function p by

Definition 2.
p(t,z) = Lu(t, )] v 4. (18)

We will use the following denotation for v € X7 independent of t:

5 Llvl; (19)

Thus if v = u(t, z) then

v=U

The Frechét derivative of L[u] acting on w will be denoted by
L'(u;w) = L'[u)w, ue X, we Xp.

Now we formally differentiate all equations (13) with respect to x and we
obtain

(iL[u]) u,t—l—L[u]um—i—(iD[u]) L[u]u,w—i-D[u]a%(L[u]u@) =5 (L[u] blu]) .

For the derivative u s, we have L[u] u 1, = & (L[u]u ) — £ (L[u]) u, where by
assumption (A>) and by (20) we can develop 2 (L[u]) as & (L[u]) = L' (u;u¢)+
L ;[u]. Finally, expressing v ; and u , from (9) and (18) i 1n terms of p we obtain

the prolonged system:

uy = blu] — R[u]D[u]p, (21)
g]t’ + D[yl gﬁ - L[u]a%b[u] + K;;L[u]) R[u|Dlu] (22)
2 (ustl] - RlDlulp) Rlul + L[}l - 5700 .
u(0,2) = u®(x), (23)
p(0,2) = °(2) = L") o (24)

Now we will consider the boundary conditions for the prolonged system. Dif-
ferentiating the boundary condition (11) with respect to ¢ and expressing w;
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from (21), we get (for j = 1,...,my, at the point (¢,0)) F,RDp = F;+ F,b.
By assumption (14) and implicit function theorem, we are able to calculate
invariants pi(¢,0), ..., pm, (t,0):

p1(t,0) .

: :{ﬁju [Rig) =1 [Dij]izlv,_,,m/l} x (25)
P, (£,0)
Pmq+1
X Fi4+Fub—Fy[Rij] =t [Dij]immit1,n :

j=mi+1,...,n j=mi+1,...,n

Pn (£,0)

and similarly for p,,, +1(¢,0), ..., pm, (£, 1).
It is worth pointing out that system (21)-(22) is expressed in Riemann invari-
ants, i.e. it has a diagonal form, whereas (9), in general, is not.

From now on for any matrix [M;;(t, )] i=1....n we will denote by M, the

j=1,...,m

k-tk row of the matrix.
In order to simplify the notation we define the following operator

Definition 3 (substitution operator P). For a matriz function f(t,z) =

nm

y(qpﬂxpmym—%apﬂxpﬂxpm),

(?f)k(t,ﬂf) = [fkl(t,xk(t;f, f))7 RN fkm(t; (Ek(t;ﬂf))]? k=1,...,n.

Thus P acts in this way that in the k-th row (k =1,...,n) of the matrix
function f(¢,z) it substitutes for x the expression of the k-th family of char-
acteristics zy(t; 1, 7).

Since sup |fi(t, xr(t;t,2))| = sup | /& (t, z)|, then P is
(¢,¢,2)€[0,T]%x[0,T]x[0,1] (t,z)€[0,T]x[0,1]

bounded and hence continuous. For the convenience we will use the following

denotation: P, f = (Pf)(¢,-,-).

Let us notice that the left-hand side of (22) is the directional derivative
along the characteristic curves:

d

@) = Puf, (26)

where f = L[u]%b[u] + [(%L[u]) R[u]D[u] + L' (u;b[u] - R[u]D[u]p)R[u] +

L 4[u)R[u)] — %D[u]] p. Integrating (26) along characteristics with respect to
t we obtain:
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e for (t,Z) € Gpir, i = 1,...,n, including the initial condition

B t

pl3) = Oop), + [ (Pufde. (27)

0

e for ({,z) € Gpir, ¢ = 1,...,my, including the boundary condition for
=0 :

pi(f, .’Z’) = pi(0i7 0) + / (fptf)l dt. (28)

e for (¢,Z) € Gpir, i = my + 1,...,mq, including the boundary condition
for x =1 :

g4

To derive Eqs. (21)-(22) we need, in principle, to assume that u(t,z) € C?.
However, the integral form (27), (28), (29) permits us to look for solutions
which are only continuous, although py is differentiable along the k-th char-
acteristics (k =1,...,n).
Let (u,p) belong to the space Xy x X with norm ||(u, p)||+ := (¢ + 1)|lullo +
cllpllo- If (u, p) is in a ball B}(u®,p”) centered at (u, p°) and open in Xo x X,
then function u stays in the ball B} (u") for enough small p. From assumptions
(A2) and (A45) we get [[uo —ul,[lo = [|Ru] p— R[u®] p°llo < cllp—p°llo+cllu—
u®|o]|p°|lo- Since ||p°[lo = HL[UO]%HO < %, we have [Ju g —ul|jo+[Ju—u[[p <
(&8 + 1)l — o + ellp — o < -

Now we will show that if there exists a solution (u(t, ), p(t, z)) of Egs. (21)-
(22) (p in the sense of Eq. (27), (28) or (29)) then it must stay in Bj(u’, p°)

for some finite time ¢t € [0,7*], where T™ is defined by (32).
The following estimations hold in the ball B (u®, p°):

u¢(t, )| < [[blulllo + R[]0 [|D[ulllo pllo < ¢+ ¢[lpllo-
Using [|pllo < [lp = p°llo + Ip°llo < £ + ¢*, we get
lue(t, 2)| < cu, (30)

where ¢, := ¢+ ¢* + er.
Function py is differentiable along the k-th characteristics. Then by (22) we
can write |2(Pp)| < ¢ + |Ipllo(c + ¢ + 2¢%) + ¢*||p||3. Hence

© 0w < (31)
— c

dt tP)| = D>
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where ¢, := A+ +ct 28+ B +r(1+ e+ 22 +2¢%) +r2ct
As for any function ¢(t) € C* there is %|p(t)| < |4 p(t)|. Then we obtain
from (30), (31) conditions:

0 0
&'u(tﬂx) - u0($)| < Cy, aﬁjt;ﬂ - T0p| < ¢p,
which imply

lu(t,z) —u®(z)| <tecy, |Pip—Pop| <tcp.

Because ¢, ¢, are constants independent of = therefore we have

I ,p) = ()l = (¢ + D=l + ellp = °llo < ¢ (eule® +1) + cpe).

r
T"=miny ———— T 32
mln{cu(cg+1)+cpca }7 ( )

then we see that solution must indeed stay in Bj(u’, p°) (hence it is bounded)
for t € [0,T].

If

5 Uniqueness of solution

We shall show the following

Lemma 1. If there exists a solution of the mized problem (9) - (10), (11) -
(12), then it is unique.

Proof. Assume u(t, z) and u(t, z) are two different solutions of problem (9)

- (10), (11) - (12), and moreover u(0,z) = u(0,z) = u’(x). For abbreviation

we will write L = L[a], D = Dl[u], b = bla], R = R[u]. We form the
difference v(t,x) = u(t, ) — a(t,z), v(0,z) = [0,...,0]T, for which holds

Lvy+ DLv, = Lb—Lb— (L — L)yuy — (DL — DL)u_. (33)

The form (33) of the system suggests introducing a new unknown function
v = Lv, and then we may write the system (33) in the Riemann invariants

ov - 0v
E*‘ oz 9 (34)
where
g = Lb—Lb—(L—L)u;—(DL—DL)u,
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Hence we have %(ﬂ’tﬁ) = P;g. After integrating from 0 to  we obtain the
following integral system:

o if (t,Z) € Gpir,, ¢ = 1,...,n, then we take into account the initial
condition 7;(0,x) =0

@i(f,f):/o (Peg); dt,

o if (t,7) € Gpir, i = 1,...,my then we take into account the boundary
condition for z = 0:
t
0(t.0) = 0030+ [ (), d.

g4

o if ({,7) € Gpir, © = my + 1,...,mg, then we consider the boundary
condition for x = I:

t

’L_}i({, i’) = 1_)1'(0'1‘,1) +/ (:Ptg)1 dt7

i

For (t,z) € Gpir, i =1,...,n (i.e. at the point belonging to the set where the
initial problem is considered) we obtain

7 t
)< [ o= L)y e+ [ 2= Ll sl d

t t
+ [IDL=DL]y sl de+ [Nl |17l ol

t t
+ [Vl @i~ 205, |21, e, -+ [ D],

Now we easily arrive at the following estimations:

O | yan
axLHO IR, Nelly d.
o lluat)lly = IR Pl < cllpllo <7+ %

o [ L(w;ur)lly = |IL' (@ b[u] — Ru] D[u]p)ll, < c|lblu] — R[u] Dlu]pll, <
2+ + P,

As a consequence of these inequalities and assumptions (Ay), (As), (A5) we
can write (i =1,...,n)

M(@MSQAnwa@—mammm+@4nmadet (35)

t t t
<or [ IRRE)o ot de+eo [ ottn)lodt < o [ fott.)ode
0 0 0
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where ¢ = 302(1 +c2+ ), 3 = A +23+S8+3r, c3 =cic+ co.
We next claim that the following inequalities hold

[0:(04,0)] < &(2) Sl[lp ot z)llo, i=1,...,m (36)
tefo

[v; (03, 0)] < &%) Sl[lp lo(t, )]0, t=m1+1,...,m9 (37)
telo

for some nonnegative constant ¢ dependent on ¢ (in ;) and ¢ — 0, if £ — 0.
Proof of (36):

The difference Fj(t,u(t,0))—F};(t, u(t,0)) = 0, for j = 1,...,m; we can rewrite
by Hadamard’s lemma in the form

0= Zn: (uk(t, 0)— g (t, 0))/0 LOF; (t,ﬁl(t, 0)-+Av1 (,0), . .. ,ﬂn(t,O)Jr)\vn(t,O)) dX.

el 8uk
(38)
Set the matrix ¥ = [1);4] J=tm where
L OF;
() = / 0 (1,01 (4,0) 4 Aoa(1,0), -, (1,0) + Ao (1,0) ) A
0 Uk

Then (38) is in the form 0 = ¥(¢) v(t, 0). Now we can rewrite the above equality
using function v: 0 = W(¢)R(t,0)v(t,0). In order to determine vy (¢,0), ..., Uy, (¢,0)

it must be satisfied the condition det (\If [Rij] =t ) # 0, for x = 0. This

gives

71(t,0) Ty +1(t,0)

-1

: = (fo [Rij] i=1n ) U [Ry] et :

. j=mi+1..n .
U, (ta 0) Un (ta O)

(39)

For i = 1,...,my there is (05,0) € Gy, for j = mi +1,...,n. Thus we
conclude from (35) that [v;(0;,0)| < 0;c3supiep 7 [|0(2; 2)|lo- On account of
(39) and the boundedness of the functions ¥, R and the above inequality we
have (36). The constant ¢(f) is expressed by o;, ¢ = 1,...,m1, and hence also
by ¢, whereas o;(t,z) — 0 if  — 0.

]
According to (35), (36), (37) we have for any (¢,z) € [0,T] x [0, ]
[0z, 2)[lo < &(t) sup |[o(t, z)llo +Cs/ [0(t, z)[lodt. (40)
te[0,1]
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If ¢ satisfies the condition
et) < 1, (41)

then we can rewrite (40) as [|o(Z,Z)[l0 < 7%= fot l5(t, )]|odt. The Gronwall
lemma now yields ||3(¢, Z)||o = 0. Hence the solution is unique if ¢ satisfies (41).
Then taking # as the initial time we easily draw the same conclusion for the
next segment of time. We follow by the same method as long as we reach the
maximal time of the existence of the solution. It is a correct reasoning, because
all constants from the page 228 do not change in the domain of determinacy

of the problem (9) - (10), (11) - (12).

6 Existence of solution

To prove the existence of the solution of (9) - (10), (11) - (12) we use the
method of successive approximations.

For abbreviation we will write L = L[u] and L = L[u] and similarly for the
other operators.

We define a sequence of successive approximations as a linear system with
initial and boundary conditions

(0)

u (t,r) = ul(z) (42)
(z)(z-ttl)_i_%)(z)(s-’:) _ (Z)(Z) (43)
C 0,0 = W) (44)
0 0) = 0 j=1,....m (45)
£ @) = 00 j=mitl... m. (46)

+1
The existence theorem for linear system ([11]) asserts a unique solution 3

of class C! for any s = 0,1,2,... and t € [0, T*], where T* is defined on page
227.
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6.1 Successive approximations for prolonged system

(s+1) (8) (s+1
du(e) T (ZE), we consider the linear system

) 0
Denoting p = L{u"]

dx
s+1 (8)  ()(s)(s)
%) = % -RDP, (47)
s+1)  (8)(s+1 (s) 9 (s) 0 )\ (5)(s)(s)
(p,t)-l-D(p,m) = L —b+|\5=L|RDP (48)
ox ox
(s) () (8)(s)(s) (s)(s+1) (s), 5) 9 (&) (s+1)
+L(v; b — RDP)R P +(L,t[u]R—D> ;
with conditions
s+1 0
“ow = W, (49)
(s+1) (0)
p (0,z) = D, (50)
(s+1)
e (0) (4D () (s) o
: =9 Fu Byl g Digliztom x (51)
(s+1) (t,0)
Pm,y (t70>
(s+1)
(541 (s+D)(g  (s+1) (4 (s) Pmi+1
<) et Fu b = Fu [Rig] oo [Dif]jil",;}iizi:izﬁ :
(s+1)
Similarly for the invariants p(;:}r)l (t,0),..., (5:;12) (t,1).
Using induction we will demonstrate that for any s =0, 1,... the solution

s) (s)

of (47)-(51) exits and it is defined for each ¢t € [0,7*] and moreover ((u), r)
stays in By (u®, p°).

s) (s)
Assume that ((u), p) e B(u®,p°) fort € [0,T*]. If so, then the same estimates

(s+1) (s+1) (s+1) (s+1) |
as on page 226 are true for ( w ', P ). Therefore ( u *, P ') is defined for
0) (0)

t € [0,T*] and stays in B’ (u® p°). Since ((u), P) € B;(u®,p°) for any time,

s) (s)
then ((u), P)s=0,1,... € Bj(u®,p°) for t € [0, T*].

6.2 Uniform convergence of {(151)}

We shall show
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Lemma 2. The sequence {(152)} is convergent in a Banach space C([0,T*] xR).

Proof. )
s+1 S +1
We define the new unknown vector function (67‘ ) (t,x) =L ((su ' (131,))7

+1
s=0,1,... with the initial condition (ST ) (0,z) =10,... 7O]T . From (43) we
+1
obtain the system involving (Sr ), that along the characteristic curves is in the

s+1 (s—1,s,s+1)
form % (fPt ( —; )) = h where

(s—1,s,5+1) (s)(s) (s=1)(s—1) (s), (8)(s+1)
B =PALb)—P( L b >+?t(L,t[5] r )

s) () (9)()() \ (8)(s+1 () /9 )\ ()(s41
+Py (L’((u); b — RDDP ) R( T )> + Py (D ((% ) “x ))

(5) (=D (s ()(s)  (s=D(s=DY (s
(-8 ) o (8- 5 )

Integrating each of these equations along the corresponding characteristic with
respect to t from 0 to ¢, we obtain

o if (£,7) € Gpir, i = 1,...,n (taking into account the initial condition
s+1
Y (0,2)=0)
s+1) _ t (s—1,s,s+1)
(;ri)(t,jt):/ (?t h )dt.
0 i
e if (t,7) € Gpir, t = 1,...,my (taking into account the boundary condi-

tion for z = 0)

_ t (s—1,s,s+1)
i (t,i‘) =7 (O'Z‘,O)-i-/ (j)t h > dt. (52)

K2

e andif (,%) € Gyir, 1 = m1+1, ..., my (taking into account the boundary
condition for x = 1)

s B s t (s—1,s,s+1)
G En = S (e + / (iPt b )dt. (53)
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In the same manner as (40) we obtain:

fori=1,...,m
(s41) _ (s+1) _ [t
75 (ai,O)‘ <é(t) sup || (t,x)||o—|—c/ | v (¢, z)|odt, (54)
te(0,%] 0
foric=mi+1,...,mg
(s+1)
i (o, )‘ e(t) sup H (t z H0+c/ | Y (t,z)lodt, (55)
te[0,1]

with some nonnegative constants ¢, ¢. The constant ¢ depends on ¢ and ¢ — 0,
when ¢ — 0.

_ s+1
If (¢,%) € Gpir, i =1,...,n then we can estimate ( T )(similarly to (35)):

(10 5
D G < e / | % flodt + ¢, / 1R odt, (56)

for some nonnegative constant c,..
From (52) and (53), for (¢,Z) € Guir, @ = 1,...,ma, using (54) and (55) we
get:

(s+1)
Ea <) s |5 Galotersd) [ 19 loavres 1 OF ot
0,t
57)

By inequalities (56) and (57) we deduce that for any (¢,z) € [0,7] x [0,1] there
holds
(S+ )

_ (s+1) [t
sup || lo < e@) sup [ 7 (t,2)llo+ (cr+C) [ || 7 [lodt
te(0,7] te(0,7] 0

t
s+1
e, / 1 F odt.
0

If ¢ satisfies the condition

e(t) <1, (58)
then
< cr+c / Cr Eo(s+1)
sup < dt Jr — / T dt. 59
Sup, 1 o < T [ I "o = J, | llo (59)
Let ¢, = 7-({) We rewrite (59) using the quantity Q (t) = m[zg)% I ¥ (t x)llo:
T

(s+1) t (s) t (s+1)
Q B<e Q()dt+ér/ Q (t)dt,
0
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. (s+1) o) - (s+D)
For every t; >t it is easily seen Q@ (f) <& [, Q ()dt+¢, [, Q (t)dt.
After applying Gronwall’s inequality we get

(s+1) o [t () _ (s) 1 (s)

Q D<o [ Qi< [ Qudi=c [ Q@

0 0 0
where ¢4 = ¢, € T . This result holds for every t; > %, hence in particular for
t =t
(s+1) t(s)

Q (ﬂ§64 Q (t)dt (60)

Applying s-times formula (60)

0)
(s+1) Ts—1 (1)
Q i) < C4/ dt/ dTl / Ts dTG 1

and observing the fact that Q is constant

(1) Q (1) = 17 o)l < 1z (- )
= T U — U =:
relon N0 = 0 o=

) )

we conclude that

Q< el

We emphasize that ¢ has to satisfy (58). To deduce (61), which holds for any
t € [0,T*], we take t as the initial time and become to an inequality similar
to (61) for a new period of time. We continue in this fashion as long as (61)
is true for ¢t € [0, T*].

cg, s=0,1,.... (61)

We are now in a position to show that {(73)} is a Cauchy sequence in the
Banach space C([0,7*] x R) with the supremum norm || - ||[o = H[lax] Il - 1lo-
te[0,T*
Let k > m. Using (61) we obtain an upper bound for the difference between
any two approximations of w:

(k) (m) (k) (k1) (m+1) _ (m)
w = u o <[l w—"u"llo+- -+ = u o

(k= )(k) (m m+) Ctkfl cat)™

(k—1)! m!

(cat)™ eat (ceqt)? (cat)h=1-m
=T (”mﬂ e T )
(ca)™ () cat | (eal)® (cat) (8™ eut
< cecQ ! <1 T 42! . (k;4—1—7n)|> < ceq e .
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Hence we deduce that the sequence {(fb)} satisfies the Cauchy criterion in the
Banach space C([0,T*] x [0,1])

(C4 T*)m N T*

(k) (m)
sup || w — u o <ceg -

te[0,T*]

— 0, if m — +oo.

(s)
6.3 Equi-continuity of the sequence { D }

Now we will prove that for any pair of the functions (u,p) from the ball
B (u,p) that satisfy the system (21) - (22) there exists a modulus of conti-

nuity i.e. a function M(8), M(5) — 0 as § — 0 such that it obeys a inequality
Ip(t,z) — p(t, Z)| < M(6) if |z — Z| < 6 for t € [0,T*]. We show all transfor-
mations for simplicity only for p; (the first component of the vector function
p). There are possible three cases:

o (t,x),(t, %) € Gpir, i.e. we consider only the initial problem;
e (t,x),(t,T) € GpiT, i.e. we consider only the boundary problem;

o (t,x) € Gpir, (t,Z) € Gpir (or symmetrically), when we have to take
into account both initial and boundary conditions.

We start from the first case with the initial condition. Let (¢, ), (¢,Z) €
Gpir. Considering the first equation of (22) along the characteristic curves
x = z1(7;t, ) and integrating system with respect to 7 from 0 to ¢, we obtain

ntz) = pd(zi(rit,z))+ /O t (Ll[u];xb[u}) (1, @1(73t,2)) dT
of ((gptalul) RUIDLup) (ras (st e
v/ (Laolu] Rlelp) (r, 2 (71, 2) dr
v/ " (L41u)(usblul — R) Dl p) R{ulp) (1.4 (rst,2) d

- [ ((Baw)n) Gt

Our next concern will be an estimation of |py (¢, ) — p1 (¢, T)|-
Since p(z1(7;t,2)) is a continuous function of z, then it is uniformly continu-
ous on any compact set (here z € [0,!]). Therefore for |x — Z| < § there exists
a function No(6) — 0 as & — 0, such that |p{(z1(7;¢,2)) — pY(21(73t,2))| <
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No(6). Because of the assumption (A;) the operator L has a bounded deriva-
tive with respect to x and hence the function Li(7,z1(7;t,2))) satisfy the
Lipschitz condition with respect to the second variable. Using this fact and
also the assumption (A4) for the operator b, we see that if |z — Z| < § then

‘(Ll[ ]aax [u }> (r,21(73t,2)) — (Ll[ ]aaz [u ]) (1, 21(751,2))

< cz\xl(T;t,x) — (7, T)| + 02|u,$(7, z1(t;t, ) — u (T, 21 (758, T))|
+N(6), (62)

where N(6) — 0 as § — 0.
By theorem on differentiability of the solutions of ODE with respect to initial
data [9] we have:

|z1(T5t, ) — 21(73 8, %)| < clz — Z| < cd. (63)
Let us point out that we can replace u 4 by p on the right-hand side of (62). The
operator R is bounded in the ball B 1( 9) and the function R[u](t,z) satisfies

the Lipschitz condition with respect to x. For this reason for ¢ € [0,T*] we
obtain

[uo (T, 21(75 8, 2)) — ua(T, 21(752, 7))| =
= |(Rlulp) (7, z1(73t, x)) — (Rulp) (7, 21(7;1, 7))
S C|p(T7$1(T;t,$)) _p(T il?l( it j))| +c |(E1(T;t,$) - .’I,'I(T;t,ff”

< e (|p<m1<7; 2)) — plr, e (rit, 8))] + 5), (64)

where c5 = max {c, ¢?}. Finally by (63) and (64) we have

ox
< (03 +oc5)0 + 0205\p(7,x1(7';t, x)) —p(r,z1 (756, Z))| + N(0).

(L0l ) (st = (Lalil ) (o (r.)|

By assumptions (A1), (A4), (63) and (64) we get
((ge1) RUDLp) (it o)
- ((;xmu]) R[u}p[u]p) (1,21 (731, x))‘ <

< cﬁ{w) 64 [p(r e (7, 3) — plr e (7 t,a-s>>|},
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for cg = max {c3(pcs + 1), ¢3p, 3 pes + 2¢3p}. In the same way we obtain

K(aaxﬁl[u]) pl) (r,21(73t,2)) — ((88;551 [u]) p1> (.21 (r: 1, 7))

< 07{N(5) + 0+ |p(r, 21 (756, %)) — p(7, 21 (73 t,x))|},

where ¢y = max {p, ¢3p?, ¢ + cpcs }.

For fixed ¢ € [0,7*] and for z belonging to any compact set, functions L;[u]
and L'[u] are uniformly continuous. Hence there exists a function Nz () — 0
as 0 — 0, such that there holds (cg > 0):

(£l + L4 (s blu] = Rl Dllp) Rlu] Dfu] p) Rlulp) (7.1 (7:1,)
~ ((Erale + L (usblu] ~ RIu] Dlulp)Rlu] Dlu] p)) Rlulp) (7,1 (73, 7))
< o34 N2 0) + ptran(r:t2) — sl () .

for cg = max {p(1 + ¢), cp, ¢* + c¢}. Summarizing, we see that

|p1(t,z) —p1(t, )] < No(d) + 09/0 (N(6) + NL(0) 4+ 6) dr (65)

t
o / Ip(r, 21 (31, 2)) = p(r, 21 (3 1, 7))
0

where ¢y = max {c® + ¢, c%cs, ¢, c7,cs}. The same conclusion can be drawn
for every component of the vector function p.
Now we define a new function

M(t,0) = max = sup |p(r,zx(73t,2)) — p(7r,2x(73t, 7)) (66)
=1,...,n |z—z|<6
<t

Basis on (65) we obtain the following formula

t
M(1,8) < No(8) + Lo (N(8) + Ni.(8) + ) + o / M(r, 8)dr.
0
The next step is to apply Gronwall’s inequality to the last expression
M(t,8) < No(8) et + t(N(é) + NL(5) + 5) (et —1).

Because Ny(d), N(9), N(§) — 0 as 6 — 0, we conclude that, for ¢t € [0,T%],
M(t,8) — 0 as 6 — 0. Consequently we take the definition of the function
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NE(8) in the form My (8) = No(8) e T + T (N(8) + Np.(6) +6 ) (e 7" ~1). Tt
remains to consider the points belonging to the set in which there is a boundary
problem. Let o1 denote time that characteristic 1 passing through the point
(t,z) enters the set [0,7] x [0,1]. Similarly & is a time that characteristic z;
passing through the point (¢, Z) enters the rectangle [0,T7] x [0,1].

If (¢t,2) € Gpir then taking into account the boundary condition for z = 0 we
obtain:

pita) = mion0)+ [ (Ll o) (rortn)ar
+ [ (st ) RIDUD ) (s (rst.20)

1

+/ (L ¢u] Rlulp) (1,21 (73 t,2)) dT

1

—&—/: (L'l [u] (u; blu] — R[u] Du] p) R[u]p) (ryx1 (T35t x))dr

1

_/; <(§;gl[u]> pl) (1,1 (1, 2)) dr.

Now we should estimate the difference |p1 (¢, z) — p1(¢, Z)| for (¢, z), (¢, ) €
Gpi7, but we will consider only py(01,0) — p1(71,0). The rest of the elements
of |p1(t,z) — p1(t,Z)| can be estimated by the right-hand side of (65). Adding
and subtracting expressions in (25) (in order to use the triangle inequality and
Lipschitz condition), we become to the following inequality (i =1,...,m):

Ip1(01,0) = p1(61,0)] < ¢ |u(o1,0) —u(G1,0)]
+c.  max  |pi(o1,0) — pi(G1,0)]

i=ma+l,...n
r, (01, u(oy, 0)) - F, (51, u(o1, 0)) ’

Fy (0’1,’[1,(0’1,0)) - F, (61,u(61,0))' ,

+Cy

+Cx

where F,, := [Fju;]i=tomi, Fy:= [Fi4y...,Fm, ] The constant c, is the
i=1

maximum of the following quantities: sup
[0,7]x[0,1]

D,R,b}, {FuF} ‘FuRi- -
omax {IDLIRL b} max{IFul P}, sup [FulRi) o

Dol
(0,77 [0,1] g=1,.m1

y sup ‘[RU} i=1,..., n [DU] i=1,..., my .
[0,T]x[0,1] j=t
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For the fixed ¢ the functions F,,, F+, u are continuous with respect to z
(z € [0,1]). Therefore all this functions are uniformly continuous and there
exists a function N(0), ) — 0 as § — 0, such that

N(o
e |u(o1,0) —u(1,0)] < N(6),
F,t(Ul, u(o1,0 ) ( u(a1,0 )’SN((;),

Fl (Ul,u(al,O)) ~F, (61,u(61,0))‘ < N(§).

Let us remind that the points (¢1,0) and (&1,0) belong to the G for ¢ =
mi1+ 1,...,n i.e. they are in the sets where Cauchy condition is considered.
Hence by reasoning for the first part of that paragraph there exists a function

N(é), N(é) — 0 as 6 — 0, such that max;—,,+1....n |Pi(01,0) — pi(G1,0)| <

N(6). Finally we obtain |p;(c1,0) — p1(51,0)| < 3¢.N(8) 4+ ¢.N(8) and for
(t,l‘), (tvj) € Gur:

pi(t,z) —p1(t,Z)] < c1oN(6) + 010‘7@(5) + 010/0 (N(0) + Np(6)+6) dr

e / Ip(r, 21 (73, 2)) — p(r, 21 (31, 2) | dr, (67)

where ¢19 = max {3c., ¢® + c5, c?cs, cg, C7, C8 }-
From (67), for the function M(¢,0) (given by (66)) there holds

M(t,6) < c1oN(8) + 10N (8) + t exo (N(5> + N (5) + 5) + e /0 t M(r,8)dr
By Gronwall’s lemma, we have
M(t,5) < (010]\7(5) n cloﬁ(é))ecwt v t(N(é) +NL(5) + 5) (0t — 1),
Now we choose
My (6) = <010N(5) + cmﬁ(a)) e 4 (N((S) T NL(O) + 5) (e T 1) .
The same conclusion can be drawn for (¢,z),(¢,Z) € Gy, i@ = my +

1,...,mo. Basis on the presented reasoning we conclude that the functions of

the sequence {(sﬁ)} which satisfy (47) are equi-continuous with respect to x for
the fixed ¢ € [0, T*]. We will not consider the third case, i.e. when (¢,z) € Gpir
and (t,Z) € Gy for i = 1,...,my or (t,z) € Gpir and (t,Z) € Gyir for
i =m1+1,...,my. Below we prove a lemma, which shows, that as a modulus
of continuity we can take a sum of the two functions: M (8) i Ma(6).
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Lemma 3. If a sequence of functions { fn(x)} is equi-continuous on [a,b] and
on [b, c], then it is also equi-continuous on [a, c].

Proof. Let
My (6) = sup_ |fn(@) = fu(y)], Ma2(6) = sup | fn(@) = fr(y)]-
oryelonb] oyl

It is easy to see that

sup |fu(2) = fu(y)] < sup |fu(x) = fa(0) + sup |fu(b) = fu(y)]

|lz—y|<s |z—b|<é [b—y|<s
z€la,b] z€la,b] yElb,c]
ye(b,c]

IN

M (0) + M3 ().
|

By the Arzela-Ascoli theorem, if functions of a sequence are equi-bounded
and equi-continuous then there exists a uniformly convergent subsequence.

(sk)
Therefore some subsequence { » } converges uniformly on [0,!] to the con-
tinuous function p(t,z) for fixed ¢t € [0,7*]. We have proved that the se-

quence {(Z)} converges uniformly to the continuous function w(¢,z). Hence

we are able to consider a subsequence {(fdf)}, which obviously is uniformly

converged to u(t,z). Under the assumptions for the operator R we have
€ (Sk)]

IR = Rl < ¢l & —ullo. Consequently, for fixed ¢ € [0,7%], R[4
sk), (sk)

converges uniformly to R[u] and R[(ﬁc )] P converges uniformly to the con-
S Sk (s )

tinuous function R[u]p. Note that (ul;): R[(zli)] p’. We conclude that the

function u(t,x) is continuously differentiable for ¢ € [0,7*], z € [0,l] and
u; = R[u]p. Since the derivative of u(t,z) is unique, then every uniformly

(s) (s)
convergent subsequence of { P} converges to p(t,z). The sequence { P } has
the only one limit point.

7 Proof of (4,) — (A5) for system (1)-(6)

For the unknown vector function u = [N,, n;, Vi, T.]T, the total current density
1(t) is, in fact, given by the functional

! -1 !
. 1 kT,
Tu] = (/ fodz) . iUo —|—/ (l/effVi + 7& (nz>> d:c] .
0 €n; m; 0 n; 0 \ m;
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We write I(t) to emphasize that values of I[u] do not depend on z, but they
can depend on ¢, because the solution usually depends on t.
V. in Eq. (4) denotes the electron velocity component in the axial direction.

It is given by V. = V; — % The characteristics of the system (1) - (4) have
the following slopes: & = Vo, & = Vi — /5705, & = Vi+ /305, & = Ve

3m 3m;

and the appropriate left eigenvectors are

Ly = [17 0,0, 0],
[ Te m; 5/<3Te m; m; \/m
L, = |0, ==_— I _mi 1
2 " ng ken?V 3my [u] ken, [u] EV 3m;’ ’
[ Te m; 5]€Te m; m; 5kTe
Ly = |0 = I mi 1
’ ’ ni+kenl2 3m; bl ken; [l + k \/B»mi’ ’

[ 377,1
Ly = 1,0,—= 1.
4 _Oa 707 2Te:|

The matrix R of the right eigenvectors (columns) and the vector b on the right
hand side of the system are in the form:

1 0 0 0
O kni 1 kni 1 L
2m; 5%1?3'":5 W1 2m; /537‘9';1': Wo 3m; Wi Ws
Iu]
Rul=|¢ _.k L ko1 2T o, :
2m; Wy 2m; Wy 3n;m; W1 Wa
W W WL W,
kTe \2 [ I[u])2
0 kT 1 kT, 1 —2T, ( mf) _(C"i)
i 3m; ‘:gk”’l;f Wy 3m; \/5;55 Wa 3n; WiWs |
I I
where W7 := ’/L?f;% — e[;j, Wy = 5;# —e[;:i] and
_ﬁNani
blul BNani
u) = Iju]
Vers (2 = Vi) + BNu(Va = V2)
2
3

Here @ is given by (6).
We assume that the initial data for the unknown functions N,, n;, V;, T, are

chosen in that way that 4/ %’“TT — % # 0. Otherwise the eigenvectors of A be-
come linearly dependent. Because of the physical sense the functions N, and
n; should be positive. And also the assumption n. = n; can made singularity

since n. appears in denominator. Below we show that for positive initial data
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both functions will be also positive.
Let u® = u(0,2) = [Nao(2), nio(), Vio (1), Teo(2)]T, u € BE(u®) € C*([0,1]).
We can assume N, (t,0) = N2 (t) > a > 0, n;(¢,0) > a > 0, Nyo(z) > a > 0.

From (1), we have on the curves ‘;—f = V,, that % = —fne — Vg 2. Then
144572 | < Braa(r + lImi0]l0) + [| Vo sllo- Since || £55¥], is bounded, we see

that || In Ny ||o is also bounded. Therefore if there exists classical, bounded so-

lution of the scheme (1) - (4) and Nyo > a > 0 then the function N, is positive

and bounded for ¢ > 0. The same conclusion can be drawn for the function
d

ni. On the curves 97 = Vi, which cover all the domain, there is (from (2))

% = BN, —V, 5. Hence % > —||Vizllo, and n;(t, ) > nipe” Jo IWizllodr
As n;g > a > 0 we see that n; is the positive and bounded function for ¢ > 0.
Now we will proof that all assumptions (A1) — (A4s) are fulfilled for the
system (1)-(6). Let us notice, that £ = V,; Lo; L3 and the right-hand side of
the system (see Eqs.(3) and (4)) depend on the total current density I[u] and
thus depend functionally on the solution.
In the coefficients of equations (3) and (4), the functional I[u] is multiplied by
the functions continuously differentiable. Moreover v.¢s(x) > 0 and the func-
tion n; is bounded from above, because it belongs to the ball B!(u°). Hence
we only need to proof that assumptions (A;) — (As) hold for Ifu].
To shorten notation we will write v instead of v.rr. We will also ignore the

constant coefficients %7 mi
i

For u € B}(u®) and t € [0, T] we have

Assumption (A;) : Functions, that are in I[u], i.e. u and veys, are continu-
ously differentiable and u € B} (u°), vefs > 0. Hence I[u] is bounded.
Assumption (Ay) : Let h = [hq, ho, h3, hy]T, h € X; and correspond with
the functions u; = Ny, us = n;, uz = V;, ug = T,. We define

Kifu = | Ldr, Kolu) = / Ve, Kslu] = / ni 8(?5;Te) .
0 t 0 0 i

Thus I = I% (miiUo + Koy + K3) . It is well known a rule of differentiating a

quotient (if a numerator and a denominator are differentiable). Therefore we
only calculate the Fréchet derivative for the functionals K7, Ko, K3:

o Kiulh = —folﬁhg dr and ||Ki[u]hllo < aq||h2llo < a1 |lh|lo, where
a; = f(f o da;

o Kiulh = folyhg dx and ||K4[ulhllo < az||hsllo < a2 | hllo, where as =
folydx;

o K4[ulh = ha(l) = ha(0) + [3 L 2y do— [1 Ts 904y gy 4 [1 Te dha gy

n; Ox n? 0 n;
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It is enough to take h € Xy because thanks to integrating by parts we

can eliminate the derivative 22 :

dzx

dz *
l l
1 On; T. On;
Kiulh = ha(l)—h = ihyde— | £ hyd
o = a0 =)+ [ Far— [ S
T.tx)1"=" [t o (T,
h — [ ha— (=) 4d
+[ 2(z) ni(t7z):|93_0 /0 20z \ni )
T.(t,2)]""" /l 1 ony
= ha(l) — ha(0) + |R — " had
all) = ha )+[ 2(7) le‘(Tfal‘)L_o—F 0o ni Ox e
_/thaTe dx.
0 Ni Ox
This gives
l l
1 On; 1 0T,
: < . il ki . il €
GGl < 2o+ Il [ |- G dat ol [ |- T
T
Hialo-2 |2 | <l
i |lo
Wherea3:2max{2+‘[liane dl‘; flial dr + 2 l‘}
0 |ne Ox 0 | ne Ox ne ||

Finally we obtain ||I'[u]h|lo < a||h||o for the constant a, which is expressed by
ai, a2, as, miiUo.

Assumption (A3) : As I[u] does not depend explicit on ¢ we have (Z1) [u] = 0.
Assumption (A4) : If Ku](z) = g(x,u), where g is continuously differen-
tiable function with respect to  and w, then the assumption (A4) is imme-
diately satisfied (taking N(d) = 0). The operators in the coefficients of the
system are products of the differentiable functions and the functional I[u], e.g.
n% I[u]. Since I[u] is bounded and & (I[u]) = 0, assumption (A4) holds.
Assumption (As) : We can check if the assumption (A4s) holds by estimating
lI[u] — I[a]llo. In the other hand it is easily seen that the Fréchet derivative
is bounded and finally the Lipschitz condition (As) holds. Since for h € X
we have || I'[u]h]lo < ¢]|h||o, the norm of the Fréchet derivative is bounded by

c. Tt implies || I[u] — I[a]lo < ¢|lu — 1llo for u € B} (uP).
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