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IFSs consisting of generalized convex
contractions

Flavian Georgescu

Abstract

In this paper we introduce the concept of iterated function system
consisting of generalized convex contractions. More precisely, given
n ∈ N∗, an iterated function system consisting of generalized convex con-
tractions on a complete metric space (X, d) is given by a finite family of
continuous functions (fi)i∈I , fi : X → X, having the property that for
every ω ∈ Λn(I) there exists a family of positive numbers (aω,v)v∈Vn(I)

such that:
α) max

ω∈Λn(I)

∑
v∈Vn(I)

aω,v < 1;

β) d(fω(x), fω(y)) ≤
∑

v∈Vn(I)

aω,vd(fv(x), fv(y)) for all ω ∈ Λn(I),

x, y ∈ X. Here Λn(I) represents the family of words with n letters from
I, Vn(I) designates the family of words having at most n − 1 letters
from I, while, if ω = ω1ω2...ωp, by fω we mean fω1 ◦ fω2 ◦ ... ◦ fωp .
Denoting such a system by S = ((X, d), n, (fi)i∈I), one can consider the
function FS : K(X) → K(X) described by FS(B) = ∪

i∈I
fi(B), for all

B ∈ K(X), where K(X) means the set of non-empty compact subsets of
X. Our main result states that FS is a Picard operator for every iterated
function system consisting of generalized convex contractions S.

1 Introduction

As the contraction condition from Banach-Caccioppoli-Picard principle is very
strong, V. Istrăţescu introduced and studied the convex contraction condition
(see [9], [10] and [11]) in order to provide contraction-type conditions which do
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not imply the contraction condition but for which the existence and uniqueness
of the fixed point are assured. More precisely we have the following:

Definition 1.1. A continuous function f : X → X, where (X, d) is a complete
metric space, is called convex contraction if there exist a, b ∈ (0, 1) such that
a+ b < 1and d(f [2](x), f [2](y)) ≤ ad(f(x)), f(y)) + bd(x, y) for every x, y ∈ X.

Istrăţescu proved that any convex contraction is a Picard operator. In
addition he presented a convex contraction which is not contraction and intro-
duced the following generalization of the concept of convex contraction that
was also studied by S. András (see [2] and [3]):

Definition 1.2. Given a complete metric space (X, d), a continuous function
f : X → X is called a generalized convex contraction provided that there exist

n ∈ N∗ and α0, α1, . . . , αn−1 ≥ 0 such that
n−1∑
i=0

αi < 1 and d(f [n](x), f [n](y)) ≤
n−1∑
k=0

αkd(f [k](x), f [k](y)) for all x, y ∈ X, where by f [k] we mean the composi-

tion of f by itself k times.

They proved that each generalized convex contraction is a Picard operator.
For other generalizations of Istrăţescu’s result see [1], [12], [14], [16], [20] and
[29].

For an iterated function system consisting of a finite family of contractions
(fk)k∈{1,2,...,n}, fk : X → X, where (X, d) is a complete metric space, there
exists a unique non-empty compact subset A (called the attractor of the sys-

tem) of X such that A =
n
∪
k=1

fk(A). This procedure gives almost all fractals

and consequently several authors extended the notion of iterated function sys-
tem (see [4], [5], [6], [7], [8], [13], [15], [17], [18], [19], [21], [22], [23], [25], [26],
[27], [28], [30], [31], [32], [33] and [34] and the references therein). Along these
lines of research R. Miculescu and A. Mihail (see [24]) introduced the concept
of iterated function system consisting of convex contractions and proved the
existence and uniqueness of the attractor of such a system obtaining in this
way another generalization of the above mentioned Istrăţescu’s result.

In this paper, combining these two directions of generalization of Istrăţescu’s
theorem, we study iterated function systems consisting of generalized convex
contractions.

2 Preliminaries

By f [n] we mean the composition of the function f : X → X by itself n times.
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For a family of functions (fi)i∈I , where fi : X → X, α1, α2, ...., αn ∈ I and
Y ⊆ X, we use the following notations:

– fα1 ◦ fα2 ◦ ... ◦ fαn

not
= fα1α2....αn

– fα1α2....αn(Y )
not
= Yα1α2....αn .

For a metric space (X, d), by K(X) we mean the set of non-empty compact
subsets of X.

BA represents the set of functions from A to B.
For a set I, we use the following notations:

– IN
∗ not

= Λ(I); hence the elements of Λ(I) can be written as infinite words
ω = ω1ω2...ωn... with letters from I

– I{1,2,...,n}
not
= Λn(I); hence the elements of Λn(I) can be written as words

ω = ω1ω2...ωn with n letters from I

– Λ0(I) ∪ Λ1(I) ∪ ... ∪ Λn−1(I)
not
= Vn(I), where Λ0(I) = {λ} is the set

consisting on the empty word; hence Vn(I) is the set of all words having at
most n− 1 letters from I

– ∪
n∈N

Λn(I)
not
= Λ∗(I); hence Λ∗(I) is the set of all finite words with letters

from I.
For a function f : X → X, by fλ we mean IdX . For α ∈ Λ(I)∪Λn(I) and

m ≤ n, we use the following notation: α1α2....αm
not
= [α]m.

By αβ we understand the concatenation of the words α ∈ Λ∗(I) and β ∈
Λ(I) ∪ Λ∗(I).

Definition 2.1. For a metric space (X, d), we consider the Hausdorff-Pompeiu
metric h : K(X)×K(X)→ [0,+∞) described by

h(A,B) = max{sup
x∈A

( inf
y∈B

d(x, y)), sup
x∈B

( inf
y∈A

d(x, y))},

for every A,B ∈ K(X).

Proposition 2.2. (see Proposition 2.1 from [26]) For a metric space (X, d),
we have

h( ∪
i∈I
Hi, ∪

i∈I
Ki) ≤ sup

i∈I
h(Hi,Ki),

for every (Hi)i∈I and (Ki)i∈I finite families of elements from K(X).

Proposition 2.3. (see Theorem 2.1 from [26]) If the metric space (X, d) is
complete, then (K(X), h) is a complete metric space.
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Definition 2.4. For a metric space (X, d), we consider the function δ :
K(X)×K(X)→ [0,+∞) defined by

δ(A,B) = sup
x∈A,y∈B

d(x, y),

for all A,B ∈ K(X).

Remark 2.5. For all A,B ∈ K(X) we have

h(A,B) ≤ δ(A,B).

Definition 2.6. A function f : X → X, where (X, d) is a metric space, is
called Picard operator if there exists a unique x∗ ∈ X such that f(x∗) = x∗

and lim
k→∞

f [k](x) = x∗ for every x ∈ X.

3 The main result

Definition 3.1. Given n ∈ N∗, an iterated function system consisting of
generalized convex contractions on a complete metric space (X, d) is given by
a finite family of continuous functions (fi)i∈I , fi : X → X, such that for every
ω ∈ Λn(I) there exists a family of positive numbers (aω,v)v∈Vn(I) such that:

α)

max
ω∈Λn(I)

∑
v∈Vn(I)

aω,v < 1;

β)

d(fω(x), fω(y)) ≤
∑

v∈Vn(I)

aω,vd(fv(x), fv(y)),

for all ω ∈ Λn(I), x, y ∈ X.
We denote such a system by

S = ((X, d), n, (fi)i∈I).

One can consider the function FS : K(X)→ K(X) described by

FS(B) = ∪
i∈I
fi(B)

for all B ∈ K(X).
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Remark 3.2. If the set I has one element, ((X, d), n, (fi)i∈I) is nothing else
but the notion of generalized convex contraction. Note also that the notion
of iterated function system consisting of convex contractions from [24] is a
particular case of the one of iterated function system consisting of generalized
convex contractions (just take n = 2).

Theorem 3.3. FS is a Picard operator, for every iterated function system
consisting of generalized convex contractions S.

Proof. In the sequel we shall use the following notations:

– S = ((X, d), n, (fi)i∈I)

–
∑

v∈Vn(I)

aω,v
not
= dω

– max
ω∈Λn(I)

dω
not
= d < 1

– yk(Y,Z) = max{xk−n+1(Y,Z), xk−n+2(Y,Z), ..., xk(Y,Z)}, where
xk(Y,Z) = sup

ω∈Λk(I)

δ(fω(Y ), fω(Z)), Y,Z ∈ K(X), k ∈ N∗, k ≥ n − 1 and

Y,Z ∈ K(X).

When no confusion is possible, we denote yk(Y, Z) by yk and xk(Y,Z) by
xk.

Claim 3.4. The sequence (yk+n(Y,Z))k∈N∗ is decreasing for all Y,Z ∈ K(X).

Justification of Claim 3.4. Given u ∈ Λk+n(I) there exist ω ∈ Λn(I) and
q ∈ Λk(I) such that u = ωq and therefore we have

d(fu(y), fu(z)) = d(fωq(y), fωq(z)) ≤

≤
∑
v∈Vn

aω,vd(fvq(x), fvq(y)) ≤ aωxk+
∑

v∈Λ1(I)

aω,vxk+1+...+
∑

v∈Λn−1(I)

aω,vxk+n−1 ≤

≤ max{xk, xk+1, ..., xk+n−1}(aω +
∑

v∈Λ1(I)

aω,v + ...+
∑

v∈Λn−1(I)

aω,v) ≤

≤ yk+n−1

∑
v∈Vn(I)

aω,v = dωyk+n−1 ≤ dyk+n−1,

for all y ∈ Y and z ∈ Z, so, by passing to supremum over y ∈ Y and z ∈ Z,
we deduce that δ(fu(Y ), fu(Z)) ≤ dyk+n−1 for all k ∈ N∗. By passing to
supremum over u ∈ Λk+n(I), we get that

xk+n = sup
ω∈Λk+n(I)

δ(fω(Y ), fω(Z)) ≤ dyk+n−1 < yk+n−1, (∗)
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for all k ∈ N∗. As

xk+1, xk+2, ..., xk+n−1 ≤ max{xk, xk+1, ..., xk+n−1} = yk+n−1, (∗∗)

from (∗) and (∗∗), we infer that yk+n = max{xk+1, xk+2, ..., xk+n} ≤ yk+n−1

for all k ∈ N∗ and the justification of Claim 3.4 is done.

Claim 3.5. lim
k→∞

xk(Y, Z) = 0 for all Y, Z ∈ K(X).

Justification of Claim 3.5 Based on (∗) from the proof of Claim 3.4, we
have

yk+2n−1 = max{xk+n, xk+1+n, ..., xk+2n−1} ≤

≤ max{dyk+n−1, dyk+n, ..., dyk+2n−2},

so, taking into account Claim 3.4, we get that yk+2n−1 ≤ dyk+n−1 for all k ∈
N∗. Consequently yni ≤ di−1yn, yni+1 ≤ di−1yn+1 ≤ di−1yn, ..., yni+n−1 ≤
di−1y2n−1 ≤ di−1yn for all i ∈ N∗, hence the series

∞∑
k=n

yk is convergent. Using

(∗) from the proof of Claim 3.4 and the comparison test, we conclude that the

series
∞∑

k=n+1

xk is convergent and, consequently, lim
k→∞

xk = 0. The justification

of Claim 3.5 is done.

Claim 3.6. For every Y ∈ K(X), the sequence (F
[k]
S (Y ))k∈N∗ is convergent.

Justification of Claim 3.6 Since

h(F
[k]
S (Y ), F

[k]
S (Z)) = h( ∪

ω∈Λk(I)
fω(Y ), ∪

ω∈Λk(I)
fω(Z))

Proposition 2.2

≤

≤ sup
ω∈Λk(I)

h(fω(Y ), fω(Z))
Remark 2.5
≤ xk, (*)

for every Y, Z ∈ K(X), k ∈ N∗, we deduce that

lim
k→∞

h(F
[k]
S (Y ), F

[k]
S (Z)) = 0. (1)

Choosing Z = FS(Y ), from (∗), the convergence of the series
∑
k

xk and the

comparison test, we infer that the series
∑
k∈N∗

h(F
[k+1]
S (Y ), F

[k]
S (Y )) is conver-

gent for all Y ∈ K(X). Therefore (F
[k]
S (Y ))k∈N∗ is a Cauchy sequence and,

because (K(X), h) is complete (see Proposition 2.3), it is convergent. The
justification of Claim 3.6 is done.
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Claim 3.6 assures us that if Y,Z ∈ K(X), then there exist AY , AZ ∈ K(X)
such that

lim
k→∞

h(F
[k]
S (Y ), AY ) = 0 and lim

k→∞
h(F

[k]
S (Z), AZ) = 0. (2)

Since h(AY , AZ) ≤ h(AY , F
[k]
S (Y )) + h(F

[k]
S (Y ), F

[k]
S (Z)) + h(F

[k]
S (Z), AZ)

for all k ∈ N∗, from (1) and (2) we obtain that AY = AZ
def
= A for every

Y,Z ∈ K(X). Hence lim
k→∞

h(F
[k]
S (B), A) = 0 for every B ∈ K(X). The

remaining part of the proof goes as in Theorem 3.2 from [24] and, consequently,
we just mark the main steps:

a) For each ω ∈ Λ(I) there exists aω ∈ X such that

lim
k→∞

sup
ω∈Λ(I)

h(f[ω]k(B), {aω}) = 0,

for every B ∈ K(X).
b) A = {aω | ω ∈ Λ(I)}.
c) The implication

lim
k→∞

h(Yk, Y ) = 0⇒ lim
k→∞

h(FS(Yk), FS(Y )) = 0

is true for every (Yk)k∈N ⊆ K(X) and Y ∈ K(X).
d) A is the unique fixed point of FS. �

Conclusions. In this paper we consider a special type of iterated function
systems, namely those consisting of generalized contractions. We proved that
such a system has a unique attractor, obtaining in this way a generalization of a
fixed point theorem concerning generalized convex contractions which is due to
V. Istrăţescu. In a future paper we intend to study iterated function systems
consisting of generalized convex contractions in the more general setting of
b-metric spaces.
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[5] M. Barnsley, K. Leśniak and M. Rypka, Chaos game for IFSs on topolo-
gical spaces, J. Math. Anal. Appl. 435, (2016), 1458-1466.

[6] M. Boriceanu, M. Bota and A. Petruşel, Multivalued fractals in b-metric
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