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A relaxation theorem for a differential inclusion
with ”maxima”

Aurelian Cernea

Abstract
We consider a Cauchy problem associated to a nonconvex differential
inclusion with ”maxima” and we prove a Filippov type existence result.
This result allows to obtain a relaxation theorem for the problem con-
sidered.

1 Indroduction

Differential equations with maximum have proved to be strong tools in the
modelling of many physical problems: systems with automatic regulation,
problems in control theory that correspond to the maximal deviation of the
regulated quantity etc.. As a consequence there was an intensive development
of the theory of differential equations with ”maxima” [2, 5, 6, 8-14] etc..

A classical example is the one of an electric generator ([2]). In this case the
mechanism becomes active when the maximum voltage variation is reached in
an interval of time. The equation describing the action of the regulator has
the form

2'(t) =ax(t) +b max xz(s)+ f(t),
sE€[t—h,t]
where a, b are constants given by the system, z(.) is the voltage and f(.) is a
perturbation given by the change of voltage.
In this paper we study the following problem

z'(t) € F(tw(t),srél[%ﬁ]x(s)) a.e. ([0,1]), =(0) =z (1)

Key Words: Set-valued map, differential inclusion, relaxation.
2010 Mathematics Subject Classification: Primary 34A60; Secondary 34K10.
Received: 20.02.2016

Accepted: 25.04.2016

61



A DIFFERENTIAL INCLUSION WITH "MAXIMA” 62

where F : [0,1] x R x R — P(R) is a set-valued map and zy, € R. Several
existing results for problem (1) obtained with fixed point approaches may be
found in our previous paper [3].

The aim of this note is to obtain a relaxation theorem for the problem
considered. Namely, we prove that the solution set of the problem (1) is dense
in the set of the relaxed solutions; i.e. the set of solutions of the differential
inclusion whose right hand side is the convex hull of the original set-valued
map. In order to prove this result we show, first, that Filippov’s ideas ([4]) can
be suitably adapted in order to obtain the existence of solutions of problem
(1). We recall that for a differential inclusion defined by a lipschitzian set-
valued map with nonconvex values Filippov’s theorem ([4]) consists in proving
the existence of a solution starting from a given ”quasi” solution. Moreover,
the result provides an estimate between the starting ”quasi”’solution and the
solution of the differential inclusion.

The paper is organized as follows: in Section 2 we briefly recall some
preliminary results that we will use in the sequel and in Section 3 we prove
the main results of the paper.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.

Let (X,d) be a metric space. The Pompeiu-Hausdorff distance of the
closed subsets A, B C X is defined by dy (A, B) = max{d*(4, B),d*(B,A)},
d*(A, B) = sup{d(a, B); a € A}, where d(z, B) = inf{d(z,y);y € B}. Let
I := [0, 1] and denote by £(I) the o-algebra of all Lebesgue measurable subsets
of I. Denote by P(R) the family of all nonempty subsets of R and by B(R)
the family of all Borel subsets of R. For any subset A C R we denote by clA
the closure of A and by ¢6(A) the closed convex hull of A.

As usual, we denote by C'(I, R) the Banach space of all continuous functions
z(.) : I — R endowed with the norm |z|c = sup,¢;|z(t)| and by L'(I,R) the
Banach space of all integrable functions z(.) : I — R endowed with the norm
x|y = fOT |z(t)|dt. The Banach space of all absolutely continuous functions
z(.) : I — R will be denoted by AC(I,R). We recall that for a set-valued map
U :I— P(R) the Aumann integral of U, denoted by [, U(t)dt, is the set

/ Ut)dt = { / w(t)dt; ul) € LNILR), u(t) € U(t) ace. (I)}
I I

We recall two results that we are going to use in the next section. The
first one is a selection result (e.g., [1]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem. The proof of the second
one may be found in [7].
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Lemma 1. Consider X a separable Banach space, B is the closed unit ball
in X, H: I — P(X) is a set-valued map with nonempty closed values and
g:1— X, L:I— Ry are measurable functions. If

Ht)Nn(gt)+ L#t)B) #0 a.e.(),
then the set-valued map t — H(t) N (g(t) + L(t)B) has a measurable selection.

Lemma 2. Let U : I — P(R) be a measurable set-valued map with closed
nonempty images and having at least one integrable selection. Then

T T
cl( /0 U (t)dt) = cl( /0 U(t)dt).

Let I(.) : R — P(R) a set-valued map with compact convex values defined
by I(t) = [a(t),b(t)], where a(.),b(.) : R — R are continuous functions with
a(t) < b(t) ¥Vt € R. For z(.) : R — R continuous we define (maxy)(t) =
max,cs4) 2(s). Therefore, max; : C(R,R) — C(R,R) is an operator whose
properties are summarized in the next lemma proved in [12].

Lemma 3. If z(.),y(.) € C(R,R), then one has

i) |maXsEI(t) z(s) — maXsey(t) y(s)| < maXsej(t) lz(s) —y(s)| Vt € R.

i) max;e | maXser(t) x(s) — maXsey(t) y(s)] < MaXseyU,ex I(t) lz(s) —y(s)]
vVt € R.

3 The main results
In what follows we assume the following hypotheses.

Hypothesis. i) F(.,.,.) : I x R x R — P(R) has nonempty closed values and
is £L(I) ® B(R x R) measurable.
ii) There exist I1(.),l2(.) € L'(I,R,) such that, for almost all ¢ € I,

du(F(t,z1,y1), F(t,x2,y2)) < L(t)|x1 — x| +12(t)[y1 —y2| Va1, 22,91, 92 € R.

Theorem 1. Assume Hypothesis satisfied and |l1]1 + |l2]1 < 1. Let y(.) €
AC(I,R) be such that there exists p(.) € L*(I,Ry) verifying d(y'(t), F(t,
y(t), maxefo,q y(s))) < p(t) a.e. (I).

Then there exists x(.) a solution of problem (1) satisfying for allt € T

1
1)1+ |l2]1

[z —yle < T )(IzO*y(O)Iﬂpll)- (2)
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Proof. We set zo(.) = y(.), fo(.) =¢'(.).
The set-valued map t — F/(t,y(t), max,¢jo4 ¥(s)) is measurable with closed
values and
F(t,y(t), max y(s)) N {y'(t) +p(t)[-L1]} #0  a.e. ().

s€[0,¢
It follows from Lemma 1 that there exists a measurable function fi(.) such
that fi(t) € F(t,zo(t), maxsep,q vo(s)) a.e. () and, for almost all ¢ € I,
[f1(t) — ' (t)| < p(t). Define z1(t) = zo + fo f1(s)ds and one has

21(t) — y(8)] < |20 — y(0)| + / p(s)ds < lzo — y(0)] + Ipls.

Thus [z1 —ylo < [z — y(0)] + [pl1-

The set-valued map t — F(t,71(t), max,e[o z1(s5)) is measurable. More-
over, the map £ — Ly (£)]a (£) 2 (£)| + 2 (£) | maxe o, 21 () — maxye o, 20(s)|
is measurable. By the lipschitzianity of F(t,.,.) we have that for almost all
tel

A(F (). Pt (1), i 1 (s)) < (P8 (8). i o).

F(t,xz1(t), max x1(s))) < l1(t)|x1(t) —xo(t)|+12(t)] max zo(s) — max x1(s)|.
s€[0,t] s€[0,t] s€0,t]

Therefore,

F(t,z1(t), max,ep,q 21(5))) N {f1(t) + (L (t)|21(t) — wo(t)|+
la(t)| max,epo,q 21(s) — maxep,q zo(s)])[~1, 1]} # 0.

From Lemma 1 we deduce the existence of a measurable function f3(.) such
that fo(t) € F'(t,21(t), maxsep,q v1(s)) a.e. (I) and for almost all t € [

[f1(8) = f2(O) < d(f2(B), F(t, 21(2), max 21(s))) < du(F(t, zo(t), max xo(s)),

s€[0,t] s€[0,t]

F(t,z1(t), max x1(s))) < li(t)|z1(t) — zo(t)| +12(t)] max zo(s) — max z1(s)].
s€[0,t] s€[0,t] s€0,t]

Define z2(t) = zo + fo f2(s)ds and one has

21 (t) — w2 (1) < / Fu(s) — fals)|ds < / [ (8)]o(s) — 21 () +

I2(8)] max zo(o) — max z1(0)|]ds < (Jl1|1 + |l2]1)]|z1 — Zo|c
o€(0,s] o€l0,s]
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< (Iafx + 21 (2o — y(0)] + |pl1)-

Assume that for some n > 1 we have constructed (z;(.))"; with z,, satis-

fying
|20 — 2n—1le < (Jlli 4 [1210)" (|20 — y(0)] + [p]1)-

The set-valued map ¢ — F(t,2,(t), max,eo4 n(s)) is measurable. At
the same time, the map ¢ — [y (t)[2,(t) — 2 —1(t)] + l2(t)| maxepo,g 2n(s) —
maxe(o,g Tn—1(5)| is measurable. As before, by the lipschitzianity of F(¢,.,.)
we have that for almost all t € T

F(t, 2 (1), maxseo, Tn(s))) O {fn(t) + (L (B)]2n(t) — 201 (t)|+
la(t)| maxseo, ) @n(s) — maxsepo,n en1(s))[=1,1]} # 0.

Using again Lemma 1 we deduce the existence of a measurable function
fny1(.) such that f, 1 1(t) € F(t,7,(t), maxsep,q Tn(s)) a.e. (I)and for almost
allte [

i1 (8) = fa (O] < dlfna (), F(t 201 (1), max 2na(s))) <

dp (F(t,2,(t), max x,(8)), F(t, xn-1(t), max x,_1(s))) <

s€(0,t] s€[0,t]
BOle(t) = 2t ()] + 1a(8)] max ,(5) = ma ()]
Define .
B (0) =20+ [ fua(s)ds. (3)
0
We have

i (£) — 2 (1)] < / Fasa () — Fuls)lds <

/0 [[1(8)|zn(s) — Tn-1(8)| + l2(s)] max_z,(0) — max x,_1(0)||ds

o€[0,s] o€(0,s]
< (|l + 2Dl — 2nale < ([l + [1210)" (20 — y(0)] + [pl1)-
Therefore (z,(.))n>0 is a Cauchy sequence in the Banach space C(I,R),

so it converges to x(.) € C(I,R). Since, for almost all ¢ € I, we have

[t (6) = Ful)] € 1) n(8) = s ()] +1a(0)| mae (1) — e 1, 1)

S [ll(t) + l2(t)]|xn - xn—1|C7

{fa())} is a Cauchy sequence in the Banach space L'(I,R) and thus it con-
verges to f(.) € L*(I,R).
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We note that one may write

| / fuls)ds— / F(s)ds| < / uls)=F(olas < | 1 (8) ()] [~

< (Il + ) Jzp41 — zle-

Therefore, one may pass to the limit in (3) and we get z(t) = xo—i—fg f(s)ds
Moreover, since the values of F(.,.,.) are closed and f,4+1(t) € F(t, z,(t),
maxeo,g Tn(t)) passing to the limlt we obtain f(t) € F(t,z(t), max,ejo4 z(t))
a.e. (I).

It remains to prove the estimate (2). One has

|z — zolc < |2n — Tp—1lc + ... + |22 — z1]c + |21 — 20lc <

(1)1 + li21)™ (lwo — y(O)] + Iph) + - + ([Ta]1 + T2[1) (|20 — y(0)] + [pl1)+

1
xo —y(0)| + < xo —y(0)| + .
(lzo = y(0)[ + [pl1) 1—(|l1\1+\12|1)(| 0 = y(0) + |pl1)
Passage to the limit in the last inequality completes the proof. O

Remark 1. A similar result to the one in Theorem 1 may be found in [3],
namely Theorem 3.1. The approach in [3], apart from the requirement that the
values of F'(.,.) are compact, does not provides a priori bounds for solutions
as in (3.1).

As we already pointed out, Theorem 1 allows to obtain a relaxation theo-
rem for problem (1). In what follows, we are concerned also with the convex-
ified (relaxed) problem

/(1) € TF (1, a(t), max #(s)).  2(0) = 0. (4)

Note that if F(.,.,.) satisfies Hypothesis, then so does the set-valued map
(t,z,y) = OF(t,z,y) (eg. [1]).

Theorem 2. We assume that Hypothesis is satisfied and |l1|1 + |l2|1 < 1. Let
Z(.) : I — R be a solution to the relaxed inclusion (4) such that the set-valued
map t — F(t,T(t), max,ep,4 T(s)) has at least one integrable selection.

Then for every € > 0 there exists z(.) a solution of problem (1) such that

|(E 7?‘0 <e.

Proof. Since T(.) is a solution of the relaxed inclusion (4), there exists f(.) €
LY(I,R), f(t) € cOF(t,Z(t), max,co, T(s)) a.e. (I) such that T(t) = o +

f(f f(s)ds
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From Lemma 2, for § > 0, there exists f(t) € F(t,Z(t), maX,e[o,] T(s)) a.e.
(I) such that

(f(s) = F(s))ds| < 6.

t
sup |
tel 0

Define Z(t) = xg + fot f(s)ds. Therefore, |# —T|c < 6.
We apply Theorem 1 for the ”quasi” solution Z(.) of (1). One has

p(t) = d(f(t), F(t,(t), max &(s))) < dg(F(t,Z(t), max Z(s)),

s€[0,t] s€[0,¢]

F(t, (1), Inax Z(s))) < L(t)[@(t) — Z(t)] + 2(2)] nax z(s) — nax (s)]

<h(®)]z —Zlc+L@#)|E —Zlc < (L) +12(2))d,

which shows that p(.) € L*(I,R).
From Theorem 1 there exists z(.) a solution of (1) such that

. 1 111 + 211
r—2x|c < < .
e S T R P S T (i + el
It remains to take §d = [1 — (|l1]1 + |l2]1)]e and to deduce that |z — T|¢ <
|z — #c + |3 — Tl < e. O
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