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From lattices to Hv–matrices

Štěpán Křehĺık and Michal Novák

Abstract

In this paper we study the concept of sets of elements, related to
results of an associative binary operation. We discuss this issue in the
context of matrices and lattices. First of all, we define hyperoperations
similar to those used when constructing hyperstructures from quasi-
ordered semigroups. This then enables us to show that if entries of
matrices are elements of lattices, these considerations provide a natural
link between matrices, some basic concepts of the hyperstructure theory
including Hv–rings and Hv–matrices and also one recent construction
of hyperstructures.

1 Introduction

A great variety of concepts can be described by grouping together such ele-
ments of a given set that are related to the result of a binary operation defined
on it. In the language of the hyperstructure theory this can be described as
constructing a hyperoperation on a set H endowed with a binary operation
· and a relation ≤. The special case of such hyperstructures, when (H, ·,≤)
is a quasi-ordered semigroup and the hyperoperation ∗ : H ×H → P∗(H) is
defined by

a ∗ b = {x ∈ H; a · b ≤ x} (1)

for all (a, b) ∈ H2, is known as EL–hyperstructures. These had been con-
structed by a number of authors including Borzooei, et al., Chvalina, Davvaz,
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Dehghan Nezhad, Hošková and others [1, 3, 9, 11] (see also book [8], sec-
tions 8.3 and 8.4.) before they were studied from the theoretical point of
view [20, 21, 22].

When one views the construction (1) from the perspective of the lattice
theory, it becomes obvious that dualizing the concept, involving one more
“similar” hyperoperation or changing a · b ≤ x in (1) to the interval definition
using two hyperoperations may lead to interesting results. Moreover, despite
all the advances of the hyperstructure theory, the concept of a matrix, i.e.
a two-dimensional scheme of m × n entries, has been studied in it only oc-
cassionaly. The exception to this rule is the concept of Hv–matrices used by
Vougiouklis in the representation theory [25, 26, 27, 28]. However, since entries
of Hv–matrices are elements of Hv–rings, i.e. hyperstructures with two hyper-
operations, defining and working with Hv–matrix multiplication, trace or rank
of Hv–matrices or other matrical concepts is complicated or yet unexplored.
In fact, when in his overview paper [25], Vougiouklis presents “some of the
open problems arising on the topic in the procedure to find representations on
hypergroups”, four out of the eight presented problems regard Hv–matrices.

Therefore, we study the concept inspired by (1) on the sets of matrices.
We show that our considerations naturally result in Hv–matrices which might
provide a tool for better applications of this concept. Also, we show that in
the context of lattices, there exist other classes of hyperstructures analogous
to EL–hyperstructures. In this we expand results of Davvaz, Leoreanu-Fotea,
Rosenberg or Varlet [13, 16, 17, 24].

Notice that the concept of ordering has been connected to the hyperstruc-
ture theory from its very beginnings. Our paper falls within the area of hy-
perstructures constructed from ordered (semi)groups. Apart from this hyper-
structures constructed from ordered sets (such as quasi-order hypergroups) as
well as ordered hyperstructures have been studied extensively. For details see
e.g. [2, 5, 6] or papers initiated by the introduction of ordered hyperstructures
in [10]. Moreover, some of these concepts have been studied in the n–ary con-
text as well [7, 14]. A short overview of possible approaches can be found in
e.g. [20].

2 Theory

2.1 Basic concepts and terminology

In this paper we use concepts of the theory of lattices and of the hyperstructure
theory. Since the basic definitions of the lattice theory are well known, we recall
some definitions of the hyperstructure theory only. By a binary hyperoperation
∗ we mean a mapping ∗ : H × H → P∗(H), where H is a non-empty set
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and P∗(H) is the set of all non-empty subsets of H. By a semihypergroup
we mean a hypergroupoid (H, ∗) such that, for all (a, b, c) ∈ H3, there is
(a ∗ b) ∗ c = a ∗ (b ∗ c). If instead of equality we require non-empty intersection
only, we talk about an Hv-semigroup. A quasihypergroup is a hypergroupoid
(H, ∗) which satisfies the reproduction law, i.e. that, for all a ∈ H, there
is H ∗ a = a ∗ H. If the reproduction law holds in Hv-semigroups, we call
such a hyperstructure an Hv-group. If two hyperoperations are defined on
H such that (H, ∗) is an Hv-group and (H, ?) is an Hv-semigroup, and ? is
weakly distributive over ∗ from both left and right, i.e. equality is replaced
with non-empty intersection in the distributive laws, then (H, ∗, ?) is called
an Hv–ring. A matrix, entries of which are elements of Hv–rings are called
Hv–matrices. Finally, by a join space we mean a commutative hypergroup
(H, ∗) such that for all (a, b, c, d) ∈ H4 the following implication holds: a/b ≈
c/d ⇒ a ∗ d ≈ b ∗ c. Here, a/b = {x ∈ H; a ∈ x ∗ b} and ≈ denotes non-
empty intersection. For further introduction to the hyperstructure theory see
canonical books [5, 6, 8, 26] or paper [12].

2.2 Context and notation

We denote Mm,n(S) the set of all m× n matrices with entries from a suitable
set S, i.e.

Mm,n(S) = {M = [mi,j ]);mi,j ∈ S, i = {1, . . . ,m}, j = {1, . . . , n}}. (2)

On Mm,n(S) we, for an arbitrary pair of matrices A,B ∈ Mm,n(S), naturally
define relation ≤M in an entry-wise manner by

A ≤M B if ai,j ≤e bi,j for all i = {1, . . . ,m}, j = {1, . . . , n}, (3)

where ≤e is a suitable relation between entries of the matrices. Suppose
that (S, inf, sup,≤e) is a lattice and define the minimum of matrices A,B ∈
Mm,n(S) by

min{A,B} = C, where C ∈Mm,n(S) is such that ci,j = inf{ai,j , bi,j} (4)

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, in case of two matrices and analogically
in case of more matrices; and the maximum of matrices A,B ∈Mm,n(S) by

max{A,B} = D, where D ∈Mm,n(S) is such that di,j = sup{ai,j , bi,j} (5)

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, in case of two matrices and analogically
in case of more matrices.

We will show later on that the straightforwardness and suspected “sim-
plicity” of the above definitions is in fact their advantage.
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2.3 Relation to EL–hyperstructures

Following is the main result concerning construction (1).

Lemma 1. ([2], Theorem 1.3, p. 146) Let (H, ·,≤) be a partially ordered
semigroup. Binary hyperoperation ∗ : H ×H → P∗(H) defined by

a ∗ b = {x ∈ H; a · b ≤ x} (6)

is associative. The semihypergroup (H, ∗) is commutative if and only if the
semigroup (H, ·) is commutative.

If we suppose that (S, inf, sup,≤e) is a lattice, then the following obviously
holds concerning relation (3) and operations (4) and (5) defined on Mm,n(S).

Lemma 2. The operations min and max defined on Mm,n(S) by (4) and (5)
respectively, are idempotent, commutative and associative. (Mm,n(S),≤M ) is
a partially ordered set. (Mm,n(S),min,≤M ), and (Mm,n(S),max,≤M ), are
partially ordered semigroups.

3 Results

3.1 Min-max hyperstructures of matrices

Lemma 2 allows us to make an immediate conclusion regarding the structure
(Mm,n(S),min,max,≤M ).

Theorem 1. (Mm,n(S),min,max,≤M ), where operations min and max are
defined by (4) and (5) and ≤M is defined by (3), is a lattice.

Proof. Lemma 2 verifies commutativity, associativity and idempotency. The
absorption laws hold thanks to the relationship between ≤M and ≤e, expressed
by (3), and the fact that (S, inf, sup,≤e) is a lattice.

Now that we have established the context of Mm,n(S), we define two pairs
of dual hyperoperations on Mm,n(S) using (3) and (4), or (5), respectively.

First, for an arbitrary pair of matrices A,B ∈Mm,n(S) we define

A ◦B = {C ∈Mm,n(S); min{A,B} ≤M C}, (7)
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i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n
. . . . . . . . .
am1 . . . amn

 ◦
 b11 . . . b1n
. . . . . . . . .
bm1 . . . bmn

 =


 c11 . . . c1n
. . . . . . . . .
cm1 . . . cmn

 ∈Mm,n(S); inf{aij , bij} ≤e cij


and dually

A •B = {D ∈Mm,n(S); max{A,B} ≥M D}, (8)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n
. . . . . . . . .
am1 . . . amn

 •
 b11 . . . b1n
. . . . . . . . .
bm1 . . . bmn

 =


d11 . . . d1n
. . . . . . . . .
dm1 . . . dmn

 ∈Mm,n(S); sup{aij , bij} ≥e dij

 .

Lemma 3. For an arbitrary quadruple A1,A2,A3,A4 ∈ Mm,n(S) we have
A1 ◦A2 ≈ A3 ◦A4 and A1 •A2 ≈ A3 •A4.

Proof. The proof for both hyperoperations is analogous, we include it only
for hyperoperation ◦. Suppose Ai, i ∈ {1, 2, 3, 4}, are arbitrary elements
of Mm,n(S). Denote B = max{A1,A2,A3,A4}. Since Mm,n(S) is a lat-
tice, there is B ∈ Mm,n(S). Moreover, there is min{A1,A2} ≤M B and
min{A3,A4} ≤M B. As a result, B ∈ A1 ◦A2 and also B ∈ A3 ◦A4, which
proves the lemma.

Example 1. Let S be the lattice of divisors of a suitable natural number n
with inf{a, b} being the greatest common divisor of a, b ∈ N, sup{a, b} being
the least common multiple of a, b and a ≤e b if a|b. For e.g. n = 120, divisors
of which are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, construct M2,2(S)
and regard an arbitrary quadruple of matrices A1,A2,A3,A4 ∈ M2,2(S), e.g.

A1 =

[
8 15
3 6

]
, A2 =

[
10 12
20 24

]
A3 =

[
1 2
5 3

]
, A4 =

[
8 12
30 1

]
. Then B =
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[
40 60
60 24

]
,

A1 ◦A2 =

{[
a11 a12
a21 a22

]
, 2|a11, 3|a12, 1|a21, 6|a22

}
,

A3 ◦A4 =

{[
a11 a12
a21 a22

]
, 1|a11, 2|a12, 5|a21, 1|a22

}
,

and obviously B ∈ A1 ◦A2 ∩A3 ◦A4.

Theorem 2. (Mm,n(S), ◦) and (Mm,n(S), •) are join spaces.

Proof. Since the hyperoperations ◦ and • are dual, i.e. the respective proofs
would be analogous, we will prove only the fact that (Mm,n(S), ◦) is a join
space. First of all, commutativity of the hyperoperation is obvious. Next,
thanks to Lemma 1 we immediately get that (Mm,n(S), ◦) is a semihypergroup.

Reproduction law, i.e. condition A◦Mm,n(S) = Mm,n(S) holds for all A ∈
Mm,n(S): It is evident that A◦Mm,n(S) ⊆Mm,n(S), for any A ∈Mm,n(S). As
far as the opposite inclusion, i.e. Mm,n(S) ⊆ A◦Mm,n(S), for all A ∈Mm,n(S),
is concerned, notice that

A◦Mm,n(S) =
⋃

X∈Mm,n(S)

A◦X =
⋃

X∈Mm,n(S)

{C ∈Mm,n(S); min{A,X} ≤ C}.

For a fixed A ∈ Mm,n(S) and an arbitrary M ∈ Mm,n(S) the following cases
are possible:

1. If M ≤M A, then min{A,M} = M and since ≤M is reflexive, there is
M ∈ A ◦Mm,n(S).

2. If A ≤M M, then min{A,M} = A which means that M ∈ A◦Mm,n(S).

3. If A and M are not in relation ≤M , then there is min{A,M} ≤ M,
which means that M ∈ A ◦Mm,n(S).

Therefore, (M, ◦) is a commutative hypergroup. Finally, the transposition
axiom holds thanks to Lemma 3.

Remark 1. Notice that Račková in [23] includes a proof of the fact that
some EL–hyperstructures are join spaces. However, the assumption of her
theorem is that the single-valued structure, in our case (Mm,n(S), inf,≤e), or
(Mm,n(S), sup,≤e), is a partially ordered group. Therefore, the result obtained
in [23] could not have been applied, since (Mm,n(S), inf), (Mm,n(S), sup) are
semigroups only. For a deeper insight in this issue cf. [21]; for a corollary see
Section 3.4.
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Now, analogous to (7) and (8) we for matrices A,B ∈Mm,n(S) define

A ∗B = {C ∈Mm,n(S); max{A,B} ≤M C}, (9)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n
. . . . . . . . .
am1 . . . amn

 ∗
 b11 . . . b1n
. . . . . . . . .
bm1 . . . bmn

 =


 c11 . . . c1n
. . . . . . . . .
cm1 . . . cmn

 ∈Mm,n(S); sup{aij , bij} ≤e cij

 .

and dually
A ? B = {D ∈Mm,n(S); min{A,B} ≥M D}, (10)

i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n
. . . . . . . . .
am1 . . . amn

 ?

 b11 . . . b1n
. . . . . . . . .
bm1 . . . bmn

 =


d11 . . . d1n
. . . . . . . . .
dm1 . . . dmn

 ∈Mm,n(S); inf{aij , bij} ≥e dij

 .

Example 2. Suppose that S is a lattice of non-negative integer pairs, where
we set (a, b) ≤e (c, d) if a ≤ c and b ≤ d, and consider 2 × 2 matrices of

such entries, e.g. A =

[
(5, 8) (3, 0)
(2, 4) (1, 9)

]
and B =

[
(7, 2) (2, 1)
(6, 1) (3, 5)

]
. Then the

hyperproduct A ∗B is

A ∗B =

{[
(a111, a

2
11) (a112, a

2
12)

(a121, a
2
21) (a122, a

2
22)

]
∈M2,2(S)

}
,

where the entries are such that

7 ≤ a111, 8 ≤ a211, 3 ≤ a112, 1 ≤ a212, 6 ≤ a121, 4 ≤ a221, 3 ≤ a122, 9 ≤ a222.

Theorem 3. (Mm,n(S), ∗) and (Mm,n(S), ?) are commutative semihypergroups.

Proof. For hyperoperation “∗” follows directly from Lemma 1 and Lemma 2;
for hyperoperation “?” follows from the fact that min and max are dual.
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Remark 2. The above semihypergroups do not satisfy the reproduction axiom.
Since the hyperoperations ? and ∗, or rather operations min and max, are dual,
we will demonstrate this on (Mm,n(S), ∗) only and show that the condition
A ∗Mm,n(S) 6= Mm,n(S) does not hold for all A ∈Mm,n(S). Notice that

A∗Mm,n(S) =
⋃

X∈Mm,n(S)

A∗X =
⋃

X∈Mm,n(S)

{C ∈Mm,n(S); max{A,X} ≤M C}.

Now, for matrices A,X ∈Mm,n(S) such that X ≤M A there is max{A,X} =
A and if we take M ∈Mm,n(S) such that M ≤M A, then M 6∈ A ∗Mm,n(S).

Theorem 4. The transposition axiom holds in (Mm,n(S), ∗) and (Mm,n(S), ?).

Proof. Once again, it is sufficient to prove the statement for (Mm,n(S), ∗)
only. The proof is analogous to the proof of Lemma 3, only for the ma-
trix B = max{A1,A2,A3,A4} there holds B ≥M max{A1,A4} and B ≥M

max{A2,A3}, i.e. B ∈ A1 ∗A4 and simultaneously B ∈ A2 ∗A3.

Example 3. If in Example 1 we use “∗” instead of “◦”, we get that

A1 ∗A2 =

{[
a11 a12
a21 a22

]
, 40|a11, 60|a12, 60|a21, 24|a22

}
,

A3 ∗A4 =

{[
a11 a12
a21 a22

]
, 8|a11, 12|a12, 30|a21, 3|a22

}
,

and obviously B =

[
40 60
60 24

]
∈ A1 ◦A2 ∩A3 ◦A4.

Remark 3. Notice that even though the transposition axiom is usually studied
in hypergroups, its validity is neither restricted to nor follows from the validity
of the reproductive law. Transposition axiom in semihypergroups which are
not hypergroups has been studied e.g. by Massouros and Massouros [18].

Among the very basic notions of the hyperstructure theory there is the idea
of proclaiming the line segment as the result of the hyperoperation applied
on its endpoints. Inspired by this, for an arbitrary pair of matrices A,B ∈
Mm,n(S), we define

A�B = {C ∈Mm,n(S); min{A,B} ≤M C ≤M max{A,B}}, (11)
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i.e., for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},a11 . . . a1n
. . . . . . . . .
am1 . . . amn

�
 b11 . . . b1n
. . . . . . . . .
bm1 . . . bmn

 =


 c11 . . . c1n
. . . . . . . . .
cm1 . . . cmn

 ∈Mm,n(S); inf{aij , bij} ≤e cij ≤e sup{aij , bij}

 .

Notice that (11) is in fact a matrix variation of a hyperoperation defined by
Varlet [24], Definition 1, which is frequentely used in machine learning appli-
cations and is often studied alongside with another hyperoperation introduced
by Nakano [19] and studied e.g. by Comer [4], which creates join spaces from
modular lattices. Varlet’s ideas have been studied and used by e.g. Davvaz,
Leoreanu-Fotea or Rosenberg [13, 15, 16, 17]. The nature of (Mm,n(S),�) can
be easily established with the help of results obtained by Varlet [24].

In this respect, first recall that a lattice (L,∧,∨) such that ∧ distributes
over ∨ (and dually ∨ over ∧) is called distributive.

Theorem 5. The lattice (Mm,n(S),min,max) is distributive if and only if the
lattice (S, inf, sup) is distributive.

Proof. The proof is rather obvious thanks to the straightforward correspon-
dence between relations “≤M” and “≤e” suggested by (3) and correspondence
between the definition of minimum and maximum of matrices using infima
and suprema of their entries. If (S, inf, sup) is distributive, then distributive
laws are valid for all aij , bij , cij ∈ S, i.e. distributive laws are valid for ma-
trices as well, which means that (Mm,n(S),min,max) is distributive. On the
other hand, if (Mm,n(S),min,max) is distributive, then max{A,min{B,C}} =
min{max{A,B},max{B,C}} for all A,B,C ∈ Mm,n(S) and thanks to the
definition of the minimum and maximum of matrices we immediately have
that (S, inf, sup) is distributive.

Definition 1. [24] Let L≤ = (L,∧,∨) be a lattice with join ∧, meet ∨ and
order relation ≤ and let:

∀(a, b) ∈ L2, a � b = {x ∈ L | a ∧ b ≤ x ≤ a ∨ b}.

Theorem 6. [24] For a lattice L≤ the following are equivalent:

(1) L≤ is distributive,

(2) L≤ = (L, �) is join space.
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Theorem 5 and Varlet’s results allow us to immediately state the following.

Corolary 1. (Mm,n(S),�) is a join space if and only if the lattice (S, inf, sup)
is distributive.

3.2 Hv–matrices

Constructions of Section 3.1 naturally result in Hv–rings, i.e. as a consequence
in Hv–matrices. In Theorem 5 we have already seen that sets of matrices
(Mm,n(S),min,max) are distributive lattices if and only if sets (S, inf, sup) of
their entries are distributive lattices. Moreover, the following – stronger –
lemma holds.

Lemma 4. Let (H,+,≤), (H, ·,≤) be partially ordered semigroups such that
“·” distributes over “+” from both left and right. For all a, b ∈ H define

a +≤ b = {x ∈ H; a + b ≤ c},
a ·≤ b = {y ∈ H; a · b ≤ c}.

Then “·≤” weakly distributes over “+≤” from both sides.

Proof. For an arbitraty h ∈ H we will denote the set {x ∈ H;h ≤ x} by [h)≤.
Now, thanks to Lemma 1 both (H, ·≤) and (H,+≤) are semihypergroups.
For arbitrary a, b, c ∈ H consider the element a · (b + c) which, thanks to
distributivity, equals a · b + a · c. Notice that

a ·≤ (b +≤ c) = a ·≤ [b + c)≤ =
⋃

x∈[b+c)≤

a · x =
⋃

b+c≤x

a · x

and on the other hand

(a·≤b)+≤(a·≤c) = [a·b)≤+≤[a·c)≤ =
⋃

y∈[a·b)≤,z∈[a·c)≤

[y+z)≤ =
⋃

a·b≤y,a·c≤z

[y+z)≤

and since the relation≤ is reflexive, we immediately see that a·(b+c) = a·b+a·c
is the common element of both regarded sets. Analogous reasoning can be done
for the element (a + b) · c = a · c + b · c.

Therefore, we straightforwardly get the following:

Theorem 7. If the lattice (S, inf, sup) is distributive, then (Mm,n(S), ◦, ∗) and
(Mm,n(S), •, ?) are Hv–rings.

Proof. Follows immediately from Theorem 2, which provides the hypergroups,
Theorem 3, which provides the semihypergroups, and Lemma 4, which pro-
vides weak distributivity (because S is distributive).
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Corolary 2. If S is a distributive lattice, then Mm,n(S) is the set of Hv–
matrices.

Proof. If in Theorem 7 we set m = n = 1, then Mm,n(S) becomes S, i.e. the
set from which we take entries of Mm,n(S). Definitions of hyperoperations
◦, •, ∗, ? simplify accordingly.

Thus we see that using Theorem 7 and Corollary 2 we can in fact construct
Hv–matrices of different classes: first of all, matrices, entries of which are
elements of S (because, thanks to Corollary 2, S is an Hv–ring). We have
denoted this set of matrices by Mm,n(S). Yet since Mm,n(S) is itself a lattice,
which is distributive if and only if S is distributive, we can apply Theorem 7
and regard elements of Mm,n(S) as entries of matrices again. For easier future
reference we can denote this set of matrices as M2

m,n(S).

Remark 4. Notice that the conditions of definition of Hv–ring are rather
weak for our context. All our hyperoperations are not only weakly associative
but associative. Also, we do not obtain Hv-groups but hypergroups. In other
words, three things remain to be secured for (Mm,n(S), ◦, ∗) and (Mm,n(S), •, ?)
to become Krasner hyperrings: existence of a scalar identity of (Mm,n(S), ◦) or
(Mm,n(S), •), existence of absorbing elements of (Mm,n(S), ∗) or (Mm,n(S), ?),
and distributivity of the hyperoperations instead of weak distributivity shown
by Lemma 4. However, Theorem 7 of [22] shows that the existence of scalar
identities of (Mm,n(S), ◦) and (Mm,n(S), •) is not possible.

3.3 Properties of the hyperstructures

Some of the hyperstructures, which have been constructed in this paper, are
EL–hyperstructures. Some of the hyperstructures are join spaces (not neces-
sarily EL–join spaces) while others are EL–hypergroups which are not con-
structed from partially ordered groups. Properties of all these types of hyper-
structures can be derived with the help of papers [12, 20, 21, 22]. For a deeper
insight in the properties of join spaces of the same type as (Mm,n(S),�), see [6],
chapter 4, or [17].

3.4 The special case of m = n = 1

When setting m = n = 1 in Mm,n(S), we obtain the original lattice S.
This enables us to construct analogies of EL–hyperstructures (6). For all
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(a, b, c, d) ∈ H4, hyperoperations (7), (8), (9), (10), (11) in this case reduce to

a ◦ b = {c ∈ S; inf{a, b} ≤e c}
a • b = {d ∈ S; sup{a, b} ≥e c}
a ∗ b = {c ∈ S; sup{a, b} ≤e c}
a ? b = {d ∈ S; inf{a, b} ≥e d}

a� b = {c ∈ S; inf{a, b} ≤e c ≤e sup{a, b}}

and we immediately get the following corollary of results of Section 3.1.

Corolary 3. If (S, inf, sup,≤e) is a lattice, then

1. (S, ◦) and (S, •) are join spaces,

2. (S, ∗) and (S, ?) are semihypergroups which are not hypergroups yet sat-
isfy the transposition axiom.

Thus – in lattices – the concept of EL–hyperstructures can be not only
dualized but also its natural analogy can be proved. As we have already seen,
in distributive lattices for hyperoperation �, the considerations suggested by
the concept of EL–hyperstructures (6) are linked to classical results [24].
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