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Abstract

The purpose of this paper is the study of prime ideals and prime
filters in hyperlattices. I—filter and the filter generated by a € L are
introduced. Moreover, we introduce dual distributive hyperlattices, and
I—filter in dual distributive hyperlattices. Some properties of hyperlat-
tices are studied and the relationship between prime ideals and prime
filters in hyperlattices is discussed.

1 Introduction

Hyperstructures theory was firstly introduced by F. Marty in the eighth congress
of Scandinavians in 1934 [16]. This theory has been developed in various fields.
The theory of hyperfields and hyperrings was initiated by Krasner and the
results were published in 1983 in [15]. In the hyperring (H,+,-), (+) is a
hyperoperation and () is a binary operation [15]. Schweigrt studied congru-
ence of multialgebra [22]. Ameri and Nozari studied relationship between the
categories of multialgebra and algebra [2]. Ameri and Rosenberg also stud-
ied congruences and strong congruences of multialgebras [3]. Hyperstructures
were studied in many papers, e.g. [1, 7, 8, 9, 10, 12, 18, 17] and books e.g.
[7, 24]. Some applications can be found e.g. in [5, 6, 11, 23].

The theory of hyperlattices was introduced by Konstantinidou in 1977 [14].
Barghi considered the prime ideal theorem for distributive hyperlattices [19].
Koguep, Nkuimi, and Lele studied ideals and filters in hyperlattices [13]. Ra-
souli and Davvaz defined fundamental relation on a hyperlattice and obtained
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a lattice from a hyperlattice. Moreover, they defined a topology on the set of
prime ideals of a distributive hyperlattice [20, 21].

In this paper, we introduce dual distributive hyperlattices, and I—filter
in dual distributive hyperlattices and study their properties. We consider
relationship between prime ideals and prime filters in hyperlattices. Moreover,
I—filter and the filter generated by a € L are introduced.

2 Preliminaries

In this section we give some results of hyperstructures and mainly hyperlattices
that we need to develop our paper.

Definition 2.1. [16] Let H be a nonempty set and P*(H) denotes the set of
all nonempty subsets of H. Maps f: H x H — P*(H), are called hyperop-
erations.

Definition 2.2. [14] Let L be a nonempty set, A— be a binary operation, and
V— be a hyperoperation on L. L is called a hyperlattice if for all a,b,c € L
the following conditions hold:

(i) a€aVa,and a Aa=a;

(ii) avb=bVa,and a Ab=D>bAa;

(i) a € [aA (aVd)]NaV (aAb);

(iv) av(bVe)=(aVb)Vc,and aA(bAc)=(aAb)Ac
(v) a€aVvVb=aANnb=hb.

Let A, B C L. Then define:
AvB=|J{avblac AbeB};

ANB={aAb|ac Abe B}.

Definition 2.3. [13] Let L be a hyperlattice. L is called bounded if there exist
0,1 € L such that for all a € L,0 < a < 1. We say that 0 is the least element
and 1 is the greatest element of L.

Definition 2.4. [19] Let L be a hyperlattice and I be a nonempty subset of
L. I is called anideal if the following conditions hold:

(i) If a,b € I, then a Vb C I;



PRIME FILTERS OF HYPERLATTICES 17

(ii) faeI,b<a,and b€ L, then b € I.
Ideal I is called a prime ideal if aANb € I thena € [ or b € I for all a,b € L.

Definition 2.5. [19] Let L be a hyperlattice and F be a nonempty subset of
L. F is called afilter if the following conditions hold:

(i) fa,b € F, then a A b € F;
(ii) fae F,a<b,and b€ L, then b € F.

Filter F is called prime filter if (aV b)NF # (), then a € F or b € F for all
a,be L.

Definition 2.6. [19] Let L be a hyperlattice. L is distributive if for all a,b, ¢ €
L:
aN(dbVe)=(aAnb)V(aNc). (2.1)

Example 2.7. [13] Let L = {0,a,b,1} and A and V are given with Table 1.
Then (L, V,A,0,1) is a distributive hyperlattice.

ALO a b1 v o a b 1
00 0 0 O 0 {0} {a} {b} {1}
a0 a 0 a a | {a} {0,a} {1}  {b,1}
b0 0 b b b | {b} {1} {0,b} {a,1}
110 a b 1 1 {1y {1} {a1} L
(a) (b)
Table 1

Theorem 2.8. [13] Let L be a distributive hyperlattice. Then 0V 0 = 0.

Definition 2.9. [4] Let L be a nonempty set. Then L is called A— semilattice
if for all a,b, c € L the following conditions hold:

(i) aNa=aq;
(ii) aANb=bAg;

(iii) an(bAc)=(aAb) Ac.
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3 Ideals and filters in hyperlattices

In this section, some properties of hyperlattices are studied and the relation-
ship between prime ideals and prime filters in hyperlattices is discussed. Fi-
nally, I—filter and the filter generated by a € L are introduced.

In the sequel, L denotes a bounded hyperlattice.

Remark 3.1. The converse of condition (v) in Definition 2.2 holds. By (iii)
in Definition 2.2 and a Ab = b, we have a € aV (aAb) = aVb. Thusa € aVb.

Definition 3.2. We define the order < on L by:

a<b<=becaVvVb<= aAb=a.

Remark 3.3. The binary relation < is reflexive, antisymmetric, and transi-
tive. Thus (L, <) is a poset.

Proposition 3.4. For all a,b € L the following conditions hold:
(i) a€aVo;
(i) 1eaVi;

(i) If a,b#0 and a Nb =0, then a,b ¢ aVb.

Proof. (i), (#): L is bounded, so 0 < a < 1, for all a € L. Therefore, by
Definition 2.2(v),a € aV0,and 1 € a V 1.

(#i7): Suppose aAb=0. If a € a Vb, by Definition 2.2(v), b = a Ab = 0. Thus
b = 0 which is a contradiction. If b € a V b, we obtain that a = 0, which is a
contradiction. O

Theorem 3.5. If P is a prime ideal of L, then L\ P is a prime filter of L.

Proof. Let a,b € L\ P. We show that a Ab € L\ P. It is clear that a,b ¢ P.
If anb € P, then a € Porb &€ P because P is prime filter, which is a
contradiction. So a Ab € L\ P. Assume z € L,a € L\ P such that a < z,
we show that © € L\ P. It is clear that a ¢ P. Suppose x ¢ L\ P, so z € P.
We have a < x and P is an ideal, therefore a € P that is a contradiction. So,
L\P is a filter. It is enough to show that L \ P is a prime filter. Suppose
a,b € L and (aVb)N(L\ P)#0D. So there exists x € L such that x € aV b
and x € L\ P. If a,b ¢ L\ P, then a,b € P, therefore a Vb C P. Hence
(aVb)N(L\ P) =0, which is a contradiction. O

Corollary 3.6. If P is a prime ideal of L, then L\ P is a A— semilattice.

The converse of Theorem 3.5 holds. Now, we state it by the following
theorem:
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Theorem 3.7. Let F be a prime filter of L. Then L\ F is a prime ideal of L.

Proof. Let a,b € L\ F. If avb ¢ L\ F, then there exists € a V b such
that z ¢ L\ F. Soz € aVband x € F. Hence x € (a Vb) N F and it implies
that (a V) NF # 0. Thus a € F or b € F, which is a contradiction. Let
a€ L\ F,z<a Assume x ¢ L\ F. Thus we have: z € F and = < a. Since
F is a filter, a € F, which is a contradiction. Therefore, L\ F' is an ideal. We
must show that L \ F is prime. Assume a,b € L such that a Ab e L\ F. If
a¢ L\Fandb¢ L\ F,thena € F and b € F. Since F is a filter, a Ab € F.
SoaAb¢ L\ F, which is a contradiction. Thus L\ F is a prime ideal. O

In the following example, we show that F must be prime in Theorem 3.7.

Example 3.8. Let L = {0,a,1} and A and V are given with Table 2. Consider
F = {1}, F is afilter of L, but it is not prime. We have L\F' = {0,a}, 0v0 = L,
and L Z L\ F,so L\ F is not a ideal of L.

A ‘ 0 a 1 \ ‘ 0 a 1
00 0 0 01 {0,a,1} {a,1} {1}
a0 a a a | {a,1} {a} {1}
110 a 1 1 {1} {1} {1}
() (b)
Table 2

Theorem 3.9. Let F' be a non-empty subset of L such that it is a A-semilattice.
Then F is a prime filter if and only if for all a,b € L, the following conditions
hold:

(i) Ifa ¢ F andb ¢ F, thenaVbC L\ F;
(it) Ifa € F and x € xV a, then v € F.

Proof. Suppose that F is a prime filter. (i) If a ¢ F and b ¢ F, then we have
a,b e (L\ F). Since by Theorem 3.7, (L \ F') is an ideal, a Vb C (L \ F).

(ii) Let « € z V a. By Definition 3.2, a < z. Since F is a filter, a < x, and
ac€ F,soxeF.

Conversely, suppose (a VO)NF # (. If a ¢ F and b ¢ F, by (i) we conclude
that a Vb C (L \ F). Therefore (a vV b) N F = (), which is a contradiction. O

Definition 3.10. Let L be a non-empty set and V— be a hyperoperation on
L. Then L is called a V— semi-hyperlattice if for all a,b, ¢ € L the following
conditions hold:
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(i) a€aVa;
(i) aVb=bVa;
(iii) av(bVve)=(aVb) Ve

Example 3.11. Let L = {0,a,1}. Hyperoperation V— on L is given by Table
3. Then (L, V) is a V— semi-hyperlattice.

V ‘ 0 a 1

0 {0}  {a1} {1}

a | {a,1}  {a} {1}

v {1y {1}
Table 3

Proposition 3.12. Let L be a A— semilattice and a V— semihyperlattice.
Then L is a hyperlattice if and only if for all a,b € L the following conditions
hold:

(i) a€faV(anb)]NlaA(aVD)];
(i) acavb=b<a.

Definition 3.13. Let (L, V, A) be a hyperlattice and S be a non-empty subset
of L. Then S is called a sub-hyperlattice of L if (S,V, A) is a hyperlattice.

Example 3.14. Let L be the hyperlattice in Example 3.8 and S = {a,1}.
Then S is a sub-hyperlattice of L.

Proposition 3.15. Let L be a hyperlattice and let S be a non-empty subset
of L. Then S is a sub-hyperlattice of L if and only ifaANb e S andaVbC S
forall a,b e S.

Remark 3.16. Let L be a distributive hyperlattice. {0}, and L are sub-
hyperlattice of L which are called the trivial sub-hyperlattices of L. Tt is
necessary that L be a distributive hyperlattice. In Example 3.8, since 0V 0 =
{0,a,1} and 0V 0 € {0}, {0} is not a sub-hyperlattice of L.

In this part we introduce I—filters and filters generated by an element a
in a type of hyperlattices that are called dual distributive.

Definition 3.17. A hyperlattice L is called quasi dual distributive if for all
a,b,ce L.
aV({bAc)C(aVb)A(aVe);
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L is called weak dual distributive if:
aV (bAc)N[(aVb)Al(aVe)]#0b;
L is called dual distributive if:
aV({bAc)=(aVb)A(aVe).

Clearly a quasi dual distributive hyperlattice is weak dual distributive and
a dual distributive hyperlattice is quasi distributive and weak dual distributive.

Example 3.18. (i) Let L be the hyperlattice L in Example 3.8. Then
(L,V,A) is a dual distributive hyperlattice but it is not distributive.
Since we have 0 V 0 = L, by Theorem 2.8, L isn’t distributive.

(ii) Let L = {0,a,b,1}. A operation and V hyperoperation on L are given
by Table 4. Then hyperlattice L is not distributive, also L is not dual

distributive.
ALO a b 1 V] 0 a b 1
00 0 0 O 01 {0} {a1} {b1} {1}
a|l0 a 0 a a | {a,1} {a,1} {1} {1}
b|0 0 b b b | {b,1} {1}  {b,1} {1}
110 a b 1 1 {1} {1} {1} {1}
(a) (b)
Table 4

Since aA(bVa) =aAl=aand (aAb)V(aAa)=0Va={al}
therefore L is not distributive and since 0V (a Ab) = 0V 0 = 0, and
(0vVa)A(OVD) ={a,1}A{b,1} ={0,a,b,1}, L is quasi dual distributive,
but it is not dual distributive.

The hyperlattices such that are distributive and dual distributive, are called
strongly distributive hyperlattices.

Example 3.19. Let L = {0,a,1}. V and A are given by Table 5. Then L is
a strongly distributive hyperlattice.

Lemma 3.20. Let L be a dual distributive hyperlattice and a € L. We define
F,={xeL:2+#0,1€xVa}, then F, is a filter of L.

Proof. Suppose z and y € F,. Sol € xtVaand 1 € yV a. Hencel €
(xVa)A(yVa). Since L is dual distributive, we have aV(xAy) = (aVz)A(aVy).



PRIME FILTERS OF HYPERLATTICES 22

V ‘ 0 a 1
0 {0} {a1} {1}
a | {a,1}  {a} {1}
{1 {1 {1}
(b)
Table 5

So 1€ (xAy)Va. Therefore, (x Ay) € F,. Let x € F, and y € L, such that
x<y. Hencel€exzVaandzAy=2xz. Sowehavel€zVa=(zAy)Va.
Since L is dual distributive, 1 € (aVz) A (aVy). Sol € aVy and it implies
that y € F,. Thus F, is a filter. O

In Lemma 3.20, L must be dual distributive. In the following example we
show that the converse of Lemma 3.20 does not hold.

Example 3.21. Let L = {0,a,b,1} and A be an operation and V hyperoper-
ation on L are given with Table 6.

‘ 0 a b 1
{0,a,0,1}  {a,b,1}  {b} {1}
{a,0,1y  {a,0,1}  {b} {1}
{o} {oy {10} {1}
{1} {1} {1} {1}
(a) (b)

Table 6: join table

o O >
O O O OO
Q@ Q 2 O
SR O
_ o Ol
— o o<

Then L is a hyperlattice which is not dual distributive, because we have 0 V
(aANb) =0Va=-{ab1},and (0Va)A(0VD) ={ab1} Ab={a,b}. So,
0V (aAb)#(0Va)A(0VD).

We have F, = {a,1}. Since a € F, and a < b, but b ¢ F,,, So F, is not a filter.
Also, we have F}, = {b, 1} that is a filter, so the converse of Lemma 3.20 does
not hold.

Proposition 3.22. F; = L\ {0}.

Proof. 1t is clear that Fy C L\ {0}. Let x € L,z # 0. Since z < 1, by
Definition 3.2, 1 € x V1. So x € F; and it means that (L \ {0}) C F;. So
F, =L\ {0}. O

Theorem 3.23. Let L be a dual distributive hyperlattice and I be a nonempty
subset of L. Define Fr={x € L:x#0,1€xVa,VYaeI}. Then
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)

(11) FI = ﬂaGI Fa'
) F,NF,=F,rp.
)

Proof. We prove (iii), only. Then x € F, N Fy, if and only if 1 € 2 V a and
leaxvb, ifand onlyif 1 € (zVa)A(xVb) =xV(aAb),if and only if 1 € Fypp.
Therefore, F, N F, = Fpp. O]

F7 is called I—filter generated by I.

Corollary 3.24. Let L be a dual distributive hyperlattice. Then the following
conditions hold:

(i) If a,b € L and a < b, then Fyyp C Fp.
(ZZ) Fa QFLL/\b a'nde QF(L/\IJ'
(iii) ({F,:a € L},() is a A— semilattice.

Proof. (i): Let a < b. By Definition 3.2, b € aVb and it implies that {b} C aVb.
By Theorem 3.23,(iv) we have: F,y, C Fj.
(it) and (éii) are obvious. O

Example 3.25. (i) Let L be the hyperlattice in Example 3.8 and I =
{a,1}. We have F, = {1} and F; = {a,1}, then F; = F,NF =
{1} n{a, 1} = {1}.

(ii) Let L be the hyperlattice in Example 3.21. We have a < b, but F, € F,
and Fy, ¢ F,, since F, = {a,1}, and F, = {b,1}.
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