~
VERSITA
Vol. 23(1),2015, 83-98

DOI: 10.1515/auom-2015-0007
An. St. Univ. Ovidius Constanta

A simulation algorithm for a single server
retrial queuing system with batch arrivals

Ion FLOREA and Corina-Stefania NANAU

Abstract

Many systems of real word are modeled by retrial queuing system
with batch arrivals. Analytical formulas for this class of systems are
complicated and address only particular cases. The paper presents a
study approach for this kind of systems, based on discrete event simula-
tion. It is shown that the given algorithm has a polynomial complexity.
Also, the object-oriented design we used for implementation is sketched.

1 Introduction

In this paper, we consider a retrial queuing system with batch arrivals having
only a server. This kind of server consists of a source of customers, a serving
space and an orbit (figure 1). The serving space contains a server and a
possible queue with a limited number of places.

Customers arrive into the system in batches; a batch is a set (vector)
of customers. Batch size is a given discrete random variable, which will be
described in the next section. If in the arrival time of a batch of customers,
the server is free, one of the customers in the batch is served immediately. The
other clients are being introduced in the server queue, or they are placed in the
orbit, or they are giving up the service. If the server is busy, the customers are

Key Words: Retrial Queuing system, Batch Arrivals, Simulation Algorithm, Polynomial
Complexity.
2010 Mathematics Subject Classification: Primary 46G05, 46L.05; Secondary 47A30,

47B47.
Received: 8 May, 2014.

Revised: 10 June, 2014.
Accepted: 30 June, 2014.

83

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 84

being placed in the queue (if the queue is not full), or they are being placed
in the orbit, or they are giving up to be served.

The customers that will come back to be served, after certain intervals of
time randomly generated, are placed in the orbit. This kind of customer can’t
see the server state. If the server is free, it will receive the service, otherwise
it will be re-inserted into the orbit or it will leave the system. Such an event
is called a retrial. We can also assume that the number of attempts of a client
to get the server service can not exceed a maximum value.

In some regards, the orbit is like a queue, in that customer spend time
waiting to be served. At the finish of service the client exits the system (figure

1).
| orbit
Source of \
clients l

SErver

r

Qutput of system

queue

Figure 1: Retrial queuing system structure

Remarks 1.

i) Queuing systems can be studied analytically (see[11], [12]) or by sim-
ulating algorithms. Using mathematical methods, formulas for the system
efficiency factor are obtained, available in particular cases. Through simula-
tion, such systems can be studied in situations where does not exist analytical
formulas.

ii) In classical queuing theory, when a client arrives in the system, if the
server is idle it is immediately served otherwise it is queued. When the server
becomes free, if the queue is not empty, a customer is picked up from the
queue and it will be served. Otherwise, the server becomes lazy. In this kind
of systems, the phenomenon of returning the customer does not appears. Such
a system can be considered a returning system, considering zero probability
that a client to be placed in the orbit.

iii) A client from the orbit can not monitor the server; while the server is
free, it could be customers in the orbit that do not ask to be served. So, there
is a delay in time until a customer in orbit realizes that the server is free and

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 85

begins the service.

iv) The order of serving customers in orbit is random; it depends on the
random order of returning customers to be served.

The characteristics of this system which we will be interested in calculating
are quantities like the mean number of customers in the system, the fraction
of the time that the server is idle, the mean length of time a customer can
expect spend in the system to receive service, and so on (the efficiency factors
of the system).

An example of such a system is an Ethernet network. In the context
of the CSMA/CD method, the clients are the messages to be transmitted
over the network communications environment, arriving in batches, and the
server is the communication environment itself. When a host wants to send a
message over the communications, it can do it only if the communications are
free; otherwise the collision phenomenon will appear. If the communication
environment is busy, the host will return after a random period of time. All
the messages to be sent by the host are placed into the orbit.

Staging systems can be studied analytically; such mathematical formulas
exist for certain cases, even for the traditional approach. Except for a few
simple models (see [1], [2], [3], [4]) retrial queues are generally difficult to
analyze analytically. The formulas obtained describe only certain efficiency
factors. Because there are ways to generate any type of random size (see [6]),
by a simulation algorithm it can be studied any kind of system.

In [9] we present a simulation algorithm for a staging system in the tra-
ditional approach, and in [10] we present such an algorithm for systems with
returns, with individual arrivals of the clients. Because a system with clients
return extends a classical one (without return), and a batch with the size
equals with 1 can be considered one client, simulation algorithm presented in
this paper extends those in the works we mentioned above, but considering
the arrival in batches and the return of the clients.

2 The model entities and the simulation mechanism

Simulation of the arrivals. The interval between two consecutive batches
of customers is a continuous random variable denoted by IntArriv. The global
variable Atime contains the event time of the next arrival. Initially, Atime is
set to 0 and after any generation the IntArriv value is added to it.

Also, the batch size denoted by DimBatch is a discrete random variable of

the form:
1 2...mb
ay az...mp

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 86

where mb represents the maximum number of clients in a batch and a; (i
= 1, mb) represents the probability that the arrived batch to have the size
equals with 4.

When a batch arrives in the system can occur one of the situations:

2.1) The server is free; we denote by nb the number of the customers in the
batch, nb < mb

e a client is selected from the batch for being served; the selection
can be done using two strategies: the first client in the batch or a
random one is selected.

e because the server is free, the queue is empty; if nb < ngmaz, where
ngmazx is the maximum number of the clients in the queue, all the
clients in the batch are inserted into the queue, otherwise ngmax
clients are inserted in the queue, and the other clients are inserted
into the orbit or they leave the system. The mechanism for this
situation will be presented later.

2.2) The server is busy; we denote by ng the number of the customers in the
queue

e if ngmax = ng means that the queue is full and all the clients in the
arriving batch are placed in the orbit.

e otherwise, if ng < ngmax, ngmaz - ng clients from the batch are
introduced in the queue, and the others will be introduced in the
orbit or they will leave the system.

For all the customers in the batch who don’t leave the system, it generates
service time denoted by Stime.

Placing customer in the orbit. We denote by 1 the event of the re-
maining in the system of the customer and his placement in the orbit (with the
probability p) and with 2 the event of his exiting the system (with probability
1-p).

The category corresponding to a newly arrived client of this type is thus a
random Bernoulli variable:

B. (1 2)
p 1-p

When a batch arrives, for each client that is not served immediately or it is
not placed in the queue, the system generates a value of the variable selection,
denoted by B. If B = 1, then the customer is placed in the orbit. Otherwise,
the customer leaves the system.

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 87

In addition, it is generated the time interval after which the customers will
return to be served, denoted by IntRet, and the maximum number of returns,
denoted by NoRet, for those who remain in the system and are placed in the
orbit.

IntArriv, Stime and IntRet are selection values for some random given
variables, that can be generated with the computer, and NoRet is a random
number, less or equal with a given number NoMaxRet.

Ctime represents the event time for termination of service of a customer
(meaning the server clock). If the server is free and there are not clients to be
served, then Ctime = oc.

Tsc variable contains the length of service for the current customer.

In addition to the variables nq and ngmaz, the queue entity is charac-
terized by Ts vector which contains the values for the serving times of the
customers in the queue. The queue is organized on the principle of FIFO,
meaning that Ts(1) corresponds to the first element, and so on, Ts(ng) cor-
responds to the last element.

The orbit entity is characterized by:

e no variable, which indicates the number of the clients in the orbit at a
time;

e To vector; To(i), with (i = 1,...,n0), corresponds to the i-th customer
in orbit and it consists of three fields: the number of remaining returns,
the value of time for the next return and the time for the client service.
If we denote:

To(i) = (To(i). Rev_Ram, To(i). Time_Rev, To(i). Time_Serv),
then
To(i).Time_Rev < To(i + 1).Time_Rev, with (i = 1, ..., no-1).

That means that the customers in the orbit are sorted ascending by the
time for the next return.

The algorithm which we present is based on the 'next event’ rule or 'min-
imum time’ rule. There are three possible types of events:

e a system arrival, if min{Atime, Ctime, To(1).Time_Rev} = Atime;
e a service finishing, if min{Atime, Ctime, To(1).Time_Rev} = Ctime

e a return of the first client in the orbit, if
min{Atime, Ctime, To(1).Time_Rev} = To(1).Time_Rev

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 88

If at some point one of the three variables will contain the time value for
the next event in the system, the Ltime variable will contain the time value
for the last event in the system. Processing of an arrival consists of:

e If the station is lazy, one of the customers in the batch is served immedi-
ately; the client selection is conform the presented things in 2.1; in this
case the total laziness time, denoted by Tlen, is updated.

e If in the arrival time the station is busy and the queue is not full, the
customers in the batch are placed in the waiting queue or in the orbit
(according to 2.2); the total time of waiting in the queue, denoted by
Twq is updated.

e For the customers who remain in the system and are placed in the orbit
it is generated and maintained IntRet and NoRet.

Finishing a client service consists of:

e total waiting time in the queue, total working time (Tserv) and number
of served clients (Tnrserv) are updated,;

e if the queue is not empty, then a new client is served and the queue
length is decremented. Otherwise, the station becomes lazy, that Ctime
prmnd OO;

Returning of the first client in the orbit consists of:

o if the station is lazy (Ctime = o0), he will be served. The number of
the clients in the orbit (Tnrorb), the total time spent in the orbit by the
clients (Torb), the station laziness time will be updated and the current
client will be removed from the orbit;

e if the station is busy and the queue is not full, then the client is in-
serted in the waiting queue (ng will be incremented and Ts(nq) will get
To(1).Time_Serv value); The number of the clients in the orbit, the to-
tal time spent in the orbit by the clients, the total waiting time in the
queue is updated and the current client will be removed from the orbit.

e if the station is busy and the queue is full, then To(1).Rev_Ram value
is decremented; if this value becomes 0, the client is removed from the
system and the total waiting time in the orbit and the number of clients
in the orbit are updated; otherwise another return time will be generated
and the client will be put again in the orbit.

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 89

Remarks 2.

i) The simulation runs until the number of arrivals generated reaches a
given value, denoted by Tnra.

ii) If we define processes like arrivals, services or returns of the clients like
cycle, all the simulation consists of repeating these cycles.

iii) If we assume that the inflow is less than the serving flow, the serving
number will not exceed the value of Tnra. Also, if the number of simulated
arrivals has a large enough value, then almost all customers will be served.
In this way, the customers that are served immediately upon arrival are also
taken into consideration.

iv) Because for each customer who returns for being served, the number
of returns has a maximum value denoted by NoMazRet, we consider that the
total number of returns does not exceed the value NoMazRet*mb*Tnra.

v) We can admit that the number of cycles of the simulation do not exceed
a value of the form ¢ * Tnra, where ¢ is a constant value.

At the end of the simulation we determine the efficiency factors of the
system:

o MTwq represents the average waiting time in the queue of customers:
MTwq =Twq/Tnrserv (Remarks 1);

e MTOrb represents the average waiting time in the orbit of customers:
MTOrb =Torb/Tnrorb (Remarks 1);

e Mts represents the average serving time of a customer:
Mts=Tserv/Tnrserv;

e (len represents the workstation laziness factor: Clen="Tlen/Ltime;

e Mqueue is the average length of the queue: Mqueue=Twq/Ltime.

3 The algorithm’s description

The following procedure describes in pseudocode the main part of the simula-
tion algorithm. The fine-grain actions are grouped as procedures called from
the main procedure. Due to lack of space, describing the procedures pseu-
docode is not included in the article; this is presented in detail at:
http://www.unitbv.ro/Portals/19/departament/colectiv/florea_ion/
PseudocodProcArtMACOS_FloreaNanau.
The main procedure named RetrQueuingSystOneStat is presented below:

1: procedure RETRQUEUINGSYSTONESTAT(Tnra)

2: //generated parameters for the interval between two consecutive

3: //arrivals, for service time, for time to spend in the orbit, the

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING

SYSTEM WITH BATCH ARRIVALS

90

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

//probability to enter in the orbit and the size of the batch
Read();
//Initial state
Nra < 0; //the number of the arrivals
ng < 0; //there is no client in the queue
Ltime < 0; //time value for the last event is 0
Ctime + oo; //the server is free
Tnrserv < 0; //total number of services is 0
Tnrorb < 0; //number of clients in the orbit is 0
Torb + 0; //total time spent in orbit by clients is 0
T'serv < 0; //total service time for the clients is 0
Tlen «+ 0; //total server laziness time is 0
Twq < 0; //total waiting time in the queue for the clients is 0
no < 0; //number of clients in the orbit is 0
To(1).Time_Rev < oo; //time for the first client return is co
//first batch arrival is generated
Gen(IntArriv, DimBatch); Atime < IntArriv;
//simulation lasts while number of processed arrivals don’t exceed a
//given value
while Nra <=Tnra do (1)
if min{Atime, Ctime,To(1).Time_Rev} = Atime then (1)
Update_Arriv();
//next event is an arrival
else(1)
if min{Atime, Ctime, To(1).Time_Rev} = Ctime then (2)
//next event represents the end of a service
Update_Fin_Serv();
//next event is a return
else(2)
Update_Retrial();
end if; (2)
end if; (1)
end while(1)
//Calculation of efficiency
MTwq < Twq/Tnrserv; //average waiting time in the queue
MTOrb < Torb/Tnrorb; //average waiting time in the orbit
Mts < Tserv/Tnrserv; //average serving time
Clen < Tlen/Ltime; //workstation laziness factor
M queue + Twq/Ltime; //the average length of the queue
Write(MTwq, MTOrb, Mts, Clen, M queue);

44: end procedure

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 91

The Update_Arriv procedure simulates a new arrival in the system. We
take into consideration the following cases:

1) The station is lazy; in this case, the values for overall laziness of the
station and the total time spent in orbit by the clients are updated. Also, a
customer is selected from the batch to be served. The other clients are placed
into the queue or into the orbit, considering various possible situations.

2) The station is busy; in this case, total waiting time and total time spent
into the orbit by the customers is updated. The customers from the batch are
placed into the orbit or into the queue, depending on the size of batch and the
number of available places into the queue.

The PutInQueue procedure generates the service time of a customer and
inserts it in the queue

The procedure InsertInOrbit achieve the orbit placement of a client. We
generate the time after that it will take place the first return and the total
number of possible returns. The client is introduced into the data structure
corresponding to the orbit, with the expectation of meeting the increasing
order of laziness times of the customers.

The selection of a customer from the batch for being served is realized by
Select procedure in two ways:

1) the first client in the batch is selected (ClServ = 1);

2) the number of the client to be selected from the batch is randomly
generated ClServ = RND(DimBatch),ClServ =1, ..., DimBatch

The Update_Fin_Serv procedure processes finishing of a service; there are
two possible situations: the queue is not empty and the first client in the queue
will be served or the queue is empty and the server becomes lazy.

The procedure updates: the total station serving time, the total number
of served clients, total waiting time of customers into the queue. We treat two
situations:

1) the first client from the queue will be served and it will be removed from
the queue

2) the queue is free and the station becomes lazy

The Update_Retrial procedure processes the return of the first customer
in the orbit to be served. If he finds the server free, then he will be served.
In other situations, if the initial return number is not exceeded, then another
return time will be generated. Otherwise, the client leaves the system without
being served.

The procedure addresses two situations:

1) The station is free. The total laziness time of the station is updated and
the first client from the orbit is served and removed from there.

2) The station is busy. If the total number of returns doesn’t exceed the
value generated when the client arrives, a new time for the client return is

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 92

generated and the client is placed into the orbit again. Otherwise, the client
will leave the system.

Algorithm complexity

We denoted by Tnra the number of the batches arrived into the system.
In this case, the maximum number of the clients arrived is mb*Tnra, where
mb represents the maximum size for a batch.

For estimating the complexity, we consider that the clients in the system
reach this maximum number.

Remarks 3. The execution of the procedures that generate the varieties
is linear (see [5]). They have a polynomial complexity, and in this case it is
0(1).

Lemma 1.

The complezity for the InsertInOrbit procedure is O(mb*Tnra).

Proof.

We denoted by mno the number of the clients in the orbit at a certain
moment, with no < mb x T'nra.

In the worst case (see http://www.unitbv.ro/Portals/19/departament
/colectiv/florea_ion/Pseudocod ProcArtMACOS_FloreaNanau), the content of
the structures while (1) and for (1) is executing mb*Tnra times each one (see
http://www.unitbv.ro/Portals/19/departament/colectiv/florea_ion/
PseudocodProcArtMACOS_FloreaNanau). It results that the complexity is
O(mb*Tnra).

Lemma 2.

The complezity for the procedure PutinQueue is O(1).

Proof.

Because its execution is linear, these procedure complexity is O(1) (see
http://www.unitbv.ro/Portals/19/departament/colectiv/florea_ion/
PseudocodProcArtMACOS_FloreaNanau).

Lemma 3.

The procedure Update_Arriv has the complexity max(O(mb), O(2*ngmaz-
mb)).

Proof.

We have DimBatch < mb and DimBatch —ngmax +ng—1 < mb. In the
worst case, the maximum number of appearances is:

On ’Then’ branch of the structure (1) the complexity is O(1)+max(O(mb),
O(mb))=0(mb) (see hitp://www.unitbv.ro/Portals/19/departament/colectiv/
florea_ion/PseudocodProcArtMACOS_FloreaNanau).

On ’Else’ branch of the structure (1) the complexity is O(1)+max(O(mb),
O(ngmaz)+O(ngmaz-mb))=maz(O(mb),0(2*ngmaz-mb))

(see http://www.unitbv.ro/Portals/19/departament/colectiv/florea_ion/
PseudocodProcArtMACOS_FloreaNanau,).

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 93

In this case, The complexity of the procedure Update_Arriv is calculated
maz(O(mb), maz(O(mb), O(2*ngmax-mb)))=max(O(mb),O(2*ngmaz-mb)).

Lemma 4.

The procedure Update_Fin_Serv has the complexity O(ngmaz-1).

Proof.

We have ng < ngmax and in this case, the complexity of the procedure is
O(1)+0(ngmaz-1)=0(ngmaz-1) (see http://www.unitbv.ro/Portals/19/
departament/colectiv/florea_ion/Pseudocod Proc ArtMA COS_FloreaNanau).

Lemma 5.

The procedure Update_Retrial has the complezity O(mb*Tnra).

Proof.

We have no < mb % Tnra. In this case, the complexity is O(1)+
maz(O(1)+0(mb*Tnra),maz(O(1)+maz(O(mb*Tnra,O(mb*Tnra)))))=
O(mb*tnra) (see http://www.unitbv.ro/Portals/19/departament/colectiv/
florea_ion/PseudocodProcArtMACOS_FloreaNanau).

Theorem 1.

The complezity for all the algorithm is mb*Tnra*(O(maz(O(mb),0(2*
ngmaz-mb))+ O (ngmaz-1)+NoMaXRet*O(mb*Tnra)))

Proof.

For demonstrating the complexity for all the algorithm, we analyze the
main procedure named RetrQueuingSystOneStat. The two linear structures
called inside this procedure have the complexity O(1). In the iterative struc-
ture while, we have:

On 'Then’ branch labeled by (1), the Update_Arriv procedure is called
mb*Tnra times. Using Lemma 3, the maximum number of operations per-
formed in this branch is mb*Tnra*(O(maz(O(mb),O(2*ngmaz-mb))))

On "Then’ branch labeled by (2), the Update_Fin_Serv procedure is called
mb*Tnra times (see Remarks 2). Using Lemma 4, the maximum number
of operations performed in this branch is mb*Tnra*0(ngmaz-1)

On ’Else’ branch labeled by (2), the Update_Retrial procedure is called
NoMazRet*mb*Tnra times. Using Lemma 5, the maximum number of oper-
ations performed in this branch is NoMaXRet*mb*Tnra*O(mb*Tnra).

Summing all of these, it follows that the maximum number of operations
performed by while cycle and giving the algorithm complexity is mb*Tnra*
(O(maz(O(mb),0(2*ngmaz-mb))+O(ngmaz-1)+NoMaXRet*O(mb*Tnra)))

4 An object-oriented implementation

For implementing the algorithm described in pseudo-code in the previous sec-
tion, we choose the object oriented programming language C#.

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 94

In this way we define a class named Client with the following proper-
ties: the number of returns from the orbit (called Rev_Ram), the time for
the next return from the orbit (called Time_Rev) and the service time (called
Time_Serv). This class implements the IClient interface that permits the
insertion into the orbit of a customer.

Another class, named RandomGenerator, that implements the interface
IRandomGenerator defines a set of methods used for generating random vari-
eties mentioned in the description of the algorithm.

The central class is named ServerActivity; its interface contains the follow-
ing methods: Update_Arriv, Update_Fin_Serv, Update_Retrial and RetrQueu-
ingSisytOneStat, which implement the procedures mentioned in the pseudo-
code description. This class contains instances for the Client class, these in-
stances being grouped in lists. A list of clients represents actually a batch of
customers arrived into the system.

The UserInterface class represents the user form that displays the charts
for the efficiency factors.

In this way a friendly interface is provided as the charts for the system
efficiency factors obtained by the execution of the program.

5 Validity of the algorithm and practical considerations

In the following we consider 30000 arrivals simulated. Also, we use the de-
notations specified around the paper. The inter-arrival time, serving time
and retrial time are exponential negative distributed, with A\, u respectively v
parameters.

The above mentioned implementation was used to obtain the statistics for
various scenarios. The resulted statistics are thus reported. The simulation
results are averaged over several runs, such that the final results can be con-
sidered as representative. We considered five scenarios.

i) Case 1. We consider that: A = 1,4 = 2 and ngmaz = oo (every arrived
1 2
0 1 (the
probability for a client that enters the system when the server is busy to be
placed into the orbit is 0).

This model is equivalent with a staging system without the client return
exp(A)/exp(p)/1 : (0o, FIFO). This model is studied by simulation in [9]. In
Table 1 the obtained results are presented comparative, executing the simu-
lation programs corresponding to this two algorithms.

customer enters the queue if the server is busy); mb = 1; B =

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 95

Efficiency factor Results obtained | Results obtained
with the simulation | with the simula-
program with no | tion program with
return return

The average waiting time | 1.00185 0.99388

in the queue

The average length of the | 0.50223 0.49857

queue

The average serving time | 0.99547 0.99103

Traffic intensity 0.49629 0.49778

Table 1

Note that the results obtained for a factor of efficiency using the two sim-
ulation programs are approximately equal.

#i) Case 2. We consider that: A =1, 4 = 2 and ngmaz = 0 (no customer
(1 2
~\05 05
is busy enters into the orbit or leave the system with the same probability),
mb = 1. This model is similar to the individual arrivals and customer return
model addressed in [10].

In this case, for the average stationary time in the orbit of clients, by
executing the two programs, the results obtained are approximately equal.

#i1) Case 3. We consider that: A\ = 1,u = 2,v = 1, ngmaz = 0; B =
(0%5 0?5); mb > 1. This model is analytical studied in [3, 8, 14, 15]; the
comparative results obtained by simulation and those analytical obtained are
presented in Table 2.

enters the queue); B (the customers who arrive when the server

Efficiency factor Results obtained | Results obtained by
analytical simulation

The average waiting time | 1.00185 0.99388

in the queue

The average length of the | 0.49725 0.49857

queue

The average serving time | 1.00742 0.99103

Traffic intensity 0.50149 0.49778

Average stationary time | 1.51001 1.49751

in the orbit

Table 2
iv) Case 4. We consider that: A\ = 1L,u = 2,v = 1, gmaz > 0; B =

(015 025); mb > 1. This model is not studied analytically. In Table 3 the

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 96

results obtained by simulation are compared, considering two different values
for nqmax.

Efficiency factor Values for nqmax = | Values for nqmax =
100 200

The average waiting time | 1.10185 0.99388

in the queue

The average length of the | 0.49725 0.49857

queue

The average serving time | 1.00742 0.99103

Traffic intensity 0.50149 0.49778

Average stationary time | 1.23158 0.74609

in the orbit

Table 3
Note that if ngmax increases, the average waiting time in the orbit de-
creases.

6 Conclusions

In this article we present a simulation algorithm for queuing system with a
single service station, with customers arrivals in batches and with unserved
client return. This class of waiting systems models many systems in the real-
world.

Also, these systems are studied analytic only for certain distributions of
the time between two consecutive arrivals, for the service time and the return
time, to obtain the service of the station. There is no analytical approach
where the server has a queue where are introduced some of the clients that
are going to be served immediately after a service finishes.

Thus, we can say that the system studied by simulation extends the ana-
lytical studied system. Therefore, it results the need and the utility of such a
simulation algorithm.

References

[1] Artalejo, J.R. a.0., Retrial queuing systems: A computational approach,
Springer, 2008.

[2] Artalejo, J.R. a.o., Standard and retrial queuing systems: A comparative
analysis, Matematica Complutense, vol. 15 (2002), no. 1, 101-129.

[3] Artalejo, J.R. a.0., On the Single Server Retrial Queue with Batch Ar-
rivals, The Indian Journal of Statistics, Vol. 66 (2004), no. 1, 140-158.

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 97

[4]

[13]

[14]

Choi, B,D. a.o., Retrial queues with collision arising from unslotted
CSMA /CD protocol, Queueing Systems Theory Appl. (1992), 335-356.

Cormen, T. H. a.o., Introduction to algorithms, MIT Press, Cambridge,
1992.

Devroye, L., Non-uniforme random variate generation, Springer Verlag,
New York, 1986.

Falin, G.I. a.o, Retrial Queues, Chapman and Hall, London, 1997.

Falin, G.I. a.0, A single-server batch arrival queue with returning cus-
tomers, European Journal of Operational Research (2010), 186-179.

Florea, 1., One algorithmic approach of first-come-first-served queuing sys-
tems, Bucharest University Annals, Informatics, 49 (2000), 41-58.

Florea, 1. a.0, An algorithmic approach of retrial queuing system with
one serving station Part I: The description of the simulation algorithm,
Bulletin of the Transilvania University of Bragov, Vol. 6(55) (2013), no.
2, 95-106.

Gross, D. a.o., Fundamentals of queuing theory, fourth edition, John Wi-
ley & Sons, 2008.

Leahu, A., Statistical Inference on the Traffic Intensity for the M/M/s
Queuing System, Analele Stiintifice ale Universitatii. Ovidius Constanta,
Vol. 11(1) (2003), no. 2, 101-104.

Krishna, K. B. a.0., The M/G/1 retrial queue with Bernoulli schedules
and general retrial times, Computers and Mathematics with Applications
43 (2002), 15-30.

Nawel K. A. a.0., On the asymptotic behaviour of M/G/1 retrial queues
with batch arrivals and impatience phenomenon, Mathematical and Com-
puter Modelling (2012), 654665.

Yamamuro K., The queue length in an M/G/1 batch arrival retrial queue,
Queueing Syst (2012), 187205.

Yang, T. a.o. J.G.C, A survey on retrial queues, Queueing Systems Theory
Appl (1987), 203-233.

A SIMULATION ALGORITHM FOR A SINGLE SERVER RETRIAL QUEUING
SYSTEM WITH BATCH ARRIVALS 98

Ton FLOREA,

Department of Mathematics and Computer Science,
Transilvania University of Bragov,

Str. Tuliu Maniu 50, 500091, Bragov, Romania.
Email: ilflorea@gmail.com

Corina-3Jtefania NANAU,

Department of Mathematics and Computer Science,
Transilvania University of Brasov,

Str. Iuliu Maniu 50, 500091, Bragov, Romania.
Email: cory2512@yahoo.com

