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Algebraic properties of the binomial edge ideal
of a complete bipartite graph

Peter Schenzel and Sohail Zafar

Abstract

Let JG denote the binomial edge ideal of a connected undirected
graph on n vertices. This is the ideal generated by the binomials xiyj −
xjyi, 1 ≤ i < j ≤ n, in the polynomial ring S = K[x1, . . . , xn, y1, . . . , yn]
where {i, j} is an edge of G. We study the arithmetic properties of S/JG

for G, the complete bipartite graph. In particular we compute dimen-
sions, depths, Castelnuovo-Mumford regularities, Hilbert functions and
multiplicities of them. As main results we give an explicit description
of the modules of deficiencies, the duals of local cohomology modules,
and prove the purity of the minimal free resolution of S/JG.

1 Introduction

The main intention of the present paper is the study of the binomial edge
ideal of the complete bipartite graph. Let G denote a connected undirected
graph on n vertices labeled by [n] = {1, 2, . . . , n}. For an arbitrary field K
let S = K[x1, . . . , xn, y1, . . . , yn] denote the polynomial ring in 2n variables.
To the graph G one can associate the binomial edge ideal JG ⊂ S generated
by binomials xiyj − xjyi, i < j, such that {i, j} is an edge of G. This is an
extension of the edge ideal (generated by the monomials) as it was studied for
instance in [12]. The binomial edge ideals of a graph G might have applications
in algebraic statistics (see [6]). By the work of Herzog et al. (see [6]) the
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minimal primary decomposition of JG is known. Besides of that not so much
is known about the arithmetic properties of S/JG. If G denotes the complete
graph on n vertices, then S/JG is the coordinate ring of the Segre embedding
P1
K × PnK . This is a variety of minimal degree. Therefore S/JG is a Cohen-

Macaulay ring with a linear resolution. In the paper Ene, Herzog and Hibi
(see [4]) they studied Cohen-Macaulayness property for some special classes of
graphs. By view of the primary decomposition of JG (see [6]) it follows that
S/JG is not so often a Cohen-Macaulay ring. As a certain generalization of
the Cohen-Macaulay property the second author has studied approximately
Cohen-Macaulay rings (see [13]). In the present paper we investigate the
binomial edge ideal of another important class of graphs, namely the complete
bipartite graph G = Km,n (see the definitions in Section 3).

As the main result of our investigations we prove (among others) the fol-
lowing results:

Theorem 1.1. With the previous notation let JG ⊂ S denote the binomial
edge ideal associated to the complete bipartite graph G = Km,n.

(a) dimS/JG = max{n+m+ 1, 2m} and

depthS/JG =

{
m+ 2, if n = 1,
n+ 2, if m ≥ n > 1.

(b) There is an explicit expression of the Hilbert series and the multiplicity
equals

e(S/JG) =

{
1, if m > n+ 1 or n = 1 and m > 2,

2m, otherwise.

(c) The Castelnuovo-Mumford regularity is regS/JG = 2 and S/JG admits
a pure minimal free resolution.

(d) There are at most 5 non-vanishing local cohomology modules Hi
S+

(S/JG).

The modules of deficiencies ωi(S/JG) = HomK(Hi
S+

(S/JG),K) are
either Cohen-Macaulay modules or the direct sum of two
Cohen-Macaulay modules.

(e) S/JG is a Cohen-Macaulay canonically ring in the sense of [10].

For the details on the modules of deficiencies we refer to Section 4 of the
paper. This is - at least for us - the first time in the literature that there is a
complete description of the structure of the modules of deficiencies besides of



BINOMIAL EDGE IDEAL OF A COMPLETE BIPARTITE GRAPH 219

sequentially Cohen-Macaulay rings or Buchsbaum rings. Our analysis is based
on the primary decomposition of JG as shown in [6].

In Section 2 we start with preliminary and auxiliary results needed in the
rest of the paper. In particular we give a short overview on the modules of
deficiencies. In Section 3 we study some of the properties of the the binomial
edge ideal JG ⊂ S associated to a complete bipartite graph. In Section 4 we
give a complete list of all the modules of deficiencies of the complete bipartite
graphs. In the final Section 5 we prove the purity of the minimal free resolution
of S/JG. This is the heart of our investigations. It gives in a natural way
some non-Cohen-Macaulay rings with pure resolutions. We might relate our
investigations as a better understanding of general binomial edge ideals.

2 Preliminaries and auxiliary results

First of all we will introduce the notation used in the sequel. Moreover we
summarize a few auxiliary results that we need.

We denote byG a connected undirected graph on n vertices labeled by [n] =
{1, 2, . . . , n}. For an arbitrary field K let S = K[x1, . . . , xn, y1, . . . , yn] denote
the polynomial ring in the 2n variables x1, . . . , xn, y1, . . . , yn. To the graph
G one can associate an ideal JG ⊂ S generated by all binomials xiyj − xjyi
for all 1 ≤ i < j ≤ n such that {i, j} is an edge of G. This construction was
invented by Herzog et al. in [6] and [4]. At first let us recall some of their
definitions.

Definition 2.1. Fix the previous notation. For a set T ⊂ [n] let G̃T denote
the complete graph on the vertex set T . Moreover let G[n]\T denote the graph
obtained by deleting all vertices of G that belong to T .

Let c = c(T ) denote the number of connected components of G[n]\T . Let
G1, . . . , Gc denote the connected components of G[n]\T . Then define

PT (G) = (∪i∈T {xi, yi}, JG̃1
, . . . , JG̃C(T )

),

where G̃i, i = 1, . . . , c, denotes the complete graph on the vertex set of the
connected component Gi, i = 1, . . . , c.

The following result is important for the understanding of the binomial
edge ideal of G.

Lemma 2.2. With the previous notation the following holds:

(a) PT (G) ⊂ S is a prime ideal of height n− c+ |T |, where |T | denotes the
number of elements of T .
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(b) JG = ∩T⊆[n]PT (G).

(c) JG ⊂ PT (G) is a minimal prime if and only if either T = ∅ or T 6= ∅
and c(T \ {i}) < c(T ) each i ∈ T .

Proof. For the proof we refer to [6].

Therefore JG is the intersection of prime ideals. That is, S/JG is a reduced
ring. Moreover, we remark that JG is an ideal generated by quadrics and
therefore homogeneous, so that S/JG is a graded ring with natural grading
induced by the N-grading of S. As a technical tool we shall need the following
result.

Proposition 2.3. Let I ⊂ S denote an ideal. Let f = f1, . . . , fr denote an
S/I-regular sequence. Then fS ∩ I = fI.

Proof. It is easy to see that TorS1 (S/fS, S/I) ∼= fS ∩ I/fI. Moreover

TorS1 (S/fS, S/I) ∼= H1(f ;S/I),

where Hi(f ;S/I) denotes the Koszul homology of f with respect to S/I. But
these homology modules vanish for i > 0.

Let M denote a finitely generated graded S-module. In the sequel we shall
use also the local cohomology modules of M with respect to S+, denoted by
Hi(M), i ∈ Z. Note that they are graded Artinian S-modules. We refer to the
textbook of Brodmann and Sharp (see [1]) for the basics on it. In particular
the Castelnuovo-Mumford regularity regM of M is defined as

reg(M) := max{e(Hi(M)) + i|depth(M) ≤ i ≤ dim(M)},

where e(Hi(M)) is the least integer m such that, for all k > m, the degree k
part of the i-th local cohomology module of M is zero. For our investigations
we need the following definition.

Definition 2.4. Let M denote a finitely generated graded S-module and
d = dimM . For an integer i ∈ Z put

ωi(M) = Ext2n−iS (M,S(−2n))

and call it the i-th module of deficiency. Moreover we define ω(M) = ωd(M)
the canonical module ofM . We write also ω2×(M) = ω(ω(M)). These modules
have been introduced and studied in [8].
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Note that by the graded version of Local Duality (see e.g. [1]) there is the
natural graded isomorphism ωi(M) ∼= HomK(Hi(M),K) for all i ∈ Z. For a
finitely generated graded S-module M and an integer i ∈ N we set

(AssM)i = {p ∈ AssM |dimS/p = i}.

In the following we shall summarize a few properties on the modules of defi-
ciencies.

Proposition 2.5. Let M denote a finitely generated graded S-module and
d = dimM.

(a) dimωi(M) ≤ i and dimωd(M) = d.

(b) (Assωi(M))i = (AssM)i for all 0 ≤ i ≤ d.

(c) M satisfies the Serre condition S2 if and only if dimωi(M) ≤ i − 2 for
all 0 ≤ i < d.

(d) There is a natural homomorphism M → ωd(ωd(M)). It is an isomor-
phism if and only if M satisfies the Serre condition S2.

(e) For a homogeneous ideal I ⊂ S there is a natural isomorphism
ωd(ωd(S/I)) ∼= HomS(ωd(S/I), ωd(S/I)), d = dimS/I, and it admits
the structure of a commutative Noetherian ring, the S2-fication of S/I.

(f) The natural map S/I → HomS(ωd(S/I), ωd(S/I)), d = dimS/I, sends
the unit element to the identity map. Therefore it is a ring homomor-
phism.

Proof. The results are shown in [8] and [10]. The proofs in the graded case
follow the same line of arguments.

A decreasing sequence {Mi}0≤i≤d of a d-dimensional S-module M is called
dimension filtration of M , if Mi/Mi−1 is either zero or of dimension i for all
i = 0, . . . , d, where M−1 = 0. It was shown (see [9]) that the dimension
filtration exists and is uniquely determined.

Definition 2.6. An S-module M is called sequentially Cohen-Macaulay if
the dimension filtration {Mi}0≤i≤d has the property that Mi/Mi−1 is either
zero or an i-dimensional Cohen-Macaulay module for all i = 0, . . . , d, (see [9]).
Note that in [9] this notion was originally called Cohen-Macaulay filtered.

Note that a sequentially Cohen-Macaulay S-module M with depthM ≥
dimM−1 was studied by Gôto (see [5]) under the name approximately Cohen-
Macaulay. For our purposes here we need the following characterization of
sequentially Cohen-Macaulay modules.
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Theorem 2.7. Let M be a finitely generated graded S-module with d = dimM.
Then the following conditions are equivalent:

(i) M is a sequentially Cohen-Macaulay.

(ii) For all 0 ≤ i < d the module of deficiency ωi(M) is either zero or an
i-dimensional Cohen-Macaulay module.

(iii) For all 0 ≤ i ≤ d the modules ωi(M) are either zero or i-dimensional
Cohen-Macaulay modules.

Proof. In the case of a local ring admitting a dualizing complex this result
was shown in [9, Theorem 5.5]. Similar arguments work also in the case of a
finitely generated graded S-module M . Note that the equivalence of (i) and
(iii) was announced (without proof) in [11].

3 Complete bipartite graphs

A bipartite graph is a graph whose vertices can be divided into two disjoint
sets V1 and V2 such every edge of G connects a vertex in V1 to one in V2.
Now the complete bipartite graph is a bipartite graph G such that for any two
vertices, v1 ∈ V1 and v2 ∈ V2, v1v2 is an edge in G. If |V1| = n and |V2| = m
then it is usually denoted by Kn,m. To simplifying notations we denote it
often by G.

Definition 3.1. For a sequence of integers 1 ≤ i1 < i2 < . . . < ik ≤ n+m let
I(i1, i2, . . . , ik) denote the ideal generated by the 2× 2 minors of the matrix(

xi1 xi2 · · · xik
yi1 yi2 · · · yik

)
.

Note that I(i1, i2, . . . , ik) is the ideal of the complete graph on the vertex set
{i1, i2, . . . , ik}.

Let JG be the binomial edge ideal of complete bipartite graph on [n+m]
vertices and JG̃ be the binomial edge ideal of complete graph on [n + m]
vertices. We begin with a lemma concerning the dimension of S/JG.

Lemma 3.2. Let G = Km,n,m ≥ n, denote the complete bipartite graph. Let

G̃ denote the complete graph on [n+m]. Let An = (x1, . . . , xn, y1, . . . , yn) for
n ≥ 1 and Bm = (xn+1, . . . , xn+m, yn+1, . . . , yn+m) for n ≥ 2 and Bm = S for
n = 1.

(a) JG = JG̃ ∩An ∩Bm is the minimal primary decomposition of JG.



BINOMIAL EDGE IDEAL OF A COMPLETE BIPARTITE GRAPH 223

(b) dimS/JG = max{n+m+ 1, 2m}.

(c) (JG̃ ∩An, JG̃ ∩Bm) = JG̃.

Proof. We start with the proof of (a). We use the statement proved in Lemma
2.2. At first consider the case m > n = 1. By view of Lemma 2.2 we have to
find all ∅ 6= T ⊆ [1 +m] such that c(T \ {i}) < c(T ). Clearly T0 = {1} satisfy
the condition because c(T0) = m > 1. Let T denote T ⊂ [1 + m] a subset
different of T0. Then If 1 ∈ T then c(T ) = m+1−|T | and c(T\{i}) = m+2−|T |
for i 6= 1 and if 1 6∈ T then c(T ) = 1 and c(T \ {i}) = 1 for all i ∈ T . Hence
we have the above primary decomposition.

Now consider the case of m ≥ n ≥ 2. As above we have to find all
∅ 6= T ⊆ [n + m] such that c(T \ {i}) < c(T ) for all i ∈ T . T1 = {1, 2, . . . , n}
satisfy the above condition because c(T ) = m and c(T \ {i}) = 1 for all i ∈ T .
Similarly T2 = {n+ 1, n+ 2, . . . , n+m} also satisfies the above condition.

Our claim is that no other T ⊆ [n+m] satisfies this condition. If T1 6⊆ T
and T2 6⊆ T then c(T ) = 1 so in this case T does not satisfy the above
condition. Now suppose that T1 ( T then c(T ) = m−|T \T1| and c(T \{i}) =
m+ 1− |T \ T1| if i ∈ T \ T1. The same argument works if T2 ( T . Hence we
have JG = JG̃ ∩An ∩Bm.

Then the statement on the dimension in (b) is a consequence of the reduced
primary decomposition shown in (a). To this end recall that dimS/An =
2m,dimS/Bm = 2n and dimS/JG̃ = n+m+ 1.

For the proof of (c) we use the notation of the Definition 3.1. Then it
follows that

JG̃ ∩An = (I(1, . . . , n, n+ i), i = 1, . . . ,m, I(n+ 1, . . . , n+m) ∩An).

Now An consists of an S/I(n+ 1, . . . , n+m)-regular sequence and

I(n+ 1, . . . , n+m) ∩An = AnI(n+ 1, . . . , n+m)

by Proposition 2.3. Therefore we get

JG̃ ∩An = (I(1, . . . , n, n+ i), i = 1, . . . ,m,AnI(n+ 1, . . . , n+m))

and similarly

JG̃ ∩Bm = (I(j, n+ 1, . . . , n+m), j = 1, . . . , n,BmI(1, . . . , n)).

But this clearly implies that (JG̃ ∩ An, JG̃ ∩ Bm) = JG̃ which proves the
statement in (c).

For the further computations we use the previous Lemma 3.2. In particular
we use three exact sequences shown in the next statement.
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Corollary 3.3. With the previous notation we have the following three exact
sequences.

(1) 0→ S/JG → S/JG̃ ∩An ⊕ S/JG̃ ∩Bm → S/JG̃ → 0.

(2) 0→ S/JG̃ ∩An → S/JG̃ ⊕ S/An → S/(JG̃, An)→ 0.

(3) 0→ S/JG̃ ∩Bm → S/JG̃ ⊕ S/Bm → S/(JG̃, Bm)→ 0.

Proof. The proof is an easy consequence of the primary decomposition as
shown in Lemma 3.2. We omit the details.

Note that in case of n = 1 we have Bm = S therefore it is enough to
consider the exact sequence (2) as (1) and (3) gives no information.

Corollary 3.4. With the previous notation we have that

depthS/JG =

{
m+ 2, if n = 1 ;
n+ 2, if m ≥ n > 1

and regS/JG ≤ 2.

Proof. The statement is an easy consequence of the short exact sequences
shown in Corollary 3.3. To this end note that S/JG̃, S/(JG̃, An) and
S/(JG̃, Bm) are Cohen-Macaulay rings of dimension n+m+1,m+1 and n+1
respectively. Moreover regS/JG̃ = regS/(JG̃, An) = regS/(JG̃, Bm) = 1. By
using the exact sequences it provides the statement on the regularity. For the
behaviour of the depth respectively the regularity in short exact sequences see
[2, Proposition 1.2.9] respectively [3, Corollary 20.19].

4 The modules of deficiency

The goal of this section is to describe all the local cohomology modules
Hi(S/JG) of the binomial edge ideal of a complete bipartite graph G. We
do this by describing their Matlis duals which by Local Duality are the mod-
ules of deficiencies. Moreover, for a homogeneous ideal J ⊂ S let H(S/J, t)
denote the Hilbert series, i.e. H(S/J, t) =

∑
i≥0(dimK [S/J ]i)t

i.
We start our investigations with the so-called star graph. That is complete

bipartite graph Km,n with n = 1. For m ≤ 2 the ideal JG is a complete
intersection generated by one respectively two quadrics so let us assume that
m > 2.

Theorem 4.1. Let G denote the star graph Km,1. Then the binomial edge
ideal JG ⊂ S has the following properties:
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(a) regS/JG = 2.

(b) ωi(S/JG) = 0 if and only if i 6∈ {m+ 2, 2m}.

(c) ω2m(S/JG) ∼= S/A1(−2m)

(d) ωm+2(S/JG) is a (m+2)-dimensional Cohen-Macaulay module and there
is an isomorphism ωm+2(ωm+2(S/JG)) ∼= (JG̃, A1)/JG̃.

Proof. We use the short exact sequence of Corollary 3.3 (2). It induces a short
exact sequence

0→ Hm+1(S/(JG̃, A1))→ Hm+2(S/JG)→ Hm+2(S/JG̃)→ 0

and an isomorphism H2m(S/JG) ∼= H2m(S/A1). Moreover the Cohen-
Macaulayness of S/JG̃, S/A1 and S/(JG̃, A1) of dimensions m + 2, 2m and
m+ 1 respectively imply that Hi(S/JG) = 0 if i 6∈ {m+ 2, 2m}.

The short exact sequence on local cohomology induces the following exact
sequence

0→ ωm+2(S/JG̃)→ ωm+2(S/JG)→ ωm+1(S/(JG̃, A1))→ 0

by Local Duality. Now we apply again local cohomology and take into account
that both ωm+2(S/JG̃) and ωm+1(S/(JG̃, A1)) are Cohen-Macaulay modules
of dimension m+ 2 and m+ 1 respectively. Then depthωm+2(S/JG) ≥ m+ 1.
By applying local cohomology and dualizing again it induces the following
exact sequence

0→ ωm+2(ωm+2(S/JG))→ S/JG̃
f→ S/(JG̃, A1)→ ωm+1(ωm+2(S/JG))→ 0.

The homomorphism f is induced by the commutative diagram

S/JG̃ → S/(JG̃, A1)
↓ ↓

ω2×(S/JG̃) → ω2×(S/JG̃, A1).

Note that the vertical maps are isomorphisms (see Proposition 2.5). Since the
upper horizontal map is surjective the lower horizontal map is surjective too.
Therefore ωm+1(ωm+2(S/JG)) = 0. That is depthωm+2(S/JG) = m+2 and it
is a Cohen-Macaulay module. Moreover ωm+2(ωm+2(S/JG)) ∼= (JG̃, A1)/JG̃.
This finally proves the statements in (b), (c) and (d).

It is well known that regS/JG = regS/(JG̃, A1) = 1 and regS/A1 = 0.
Then an inspection with the short exact sequence of Corollary 3.3 shows that
regS/JG = 2.
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In the next result we will consider the modules of deficiencies of the com-
plete bipartite graph G = Km,n, n ≥ 2.

Theorem 4.2. Let m ≥ n > 1 and assume that the pair (m,n) is different
from (n+ 1, n) and (2n− 2, n). Then

(a) regS/JG = 2.

(b) ωi(S/JG) = 0 if and only if i 6∈ {n + 2,m + 2, 2n,m + n + 1, 2m} and
there are the following isomorphisms and integers

i ωi(S/JG) depthωi(S/JG) dimωi(S/JG)
n+ 2 ωn+1(S/(JG̃, Bm)) n+ 1 n+ 1
m+ 2 ωm+1(S/(JG̃, An)) m+ 1 m+ 1

2n S/Bm(−2n) 2n 2n
n+m+ 1 ωm+n+1(S/JG̃) n+m+ 1 n+m+ 1

2m S/An(−2m) 2m 2m

Proof. Under the assumption of n + 1 < m < 2n − 2 it follows that 2m >
m+n+1 > 2n > m+2 > n+2. Then the short exact sequences (see Corollary
3.3) induce the following isomorphisms:

(1) Hn+2(S/JG) ∼= Hn+2(S/JG̃ ∩Bm) ∼= Hn+1(S/(JG̃, Bm)),

(2) Hm+2(S/JG) ∼= Hm+2(S/JG̃ ∩An) ∼= Hm+1(S/(JG̃, An)),

(3) H2n(S/JG) ∼= H2n(S/Bm) and

(4) H2m(S/JG) ∼= H2m(S/An).

Moreover there is the following short exact sequence

0→ Hm+n+1(S/JG)→ Hm+n+1(S/JG̃ ∩An)⊕Hm+n+1(S/JG̃ ∩Bm)→

→ Hm+n+1(S/JG̃)→ 0

and Hi(S/JG) = 0 if i 6∈ {n+ 2,m+ 2, 2n,m+ n+ 1, 2m}.
Because of the short exact sequences in Corollary 3.3 there are isomor-

phisms

Hm+n+1(S/JG̃ ∩Bm) ∼= Hm+n+1(S/JG̃) ∼= Hm+n+1(S/JG̃ ∩An).

So by Local Duality we get a short exact sequence

0→ ω(S/JG̃)→ ω(S/JG̃)⊕ ω(S/JG̃)→ ωm+n+1(S/JG)→ 0.
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This implies depthω(S/JG) ≥ n+m. Moreover by applying local cohomology
and again the Local Duality we get the following commutative diagram with
exact rows

0→ S/JG → S/JG̃ ∩An ⊕ S/JG̃ ∩Bm → S/JG̃ → 0
↓ ↓ ‖

0→ Ω(S/JG) → S/JG̃ ⊕ S/JG̃

f→ S/JG̃ → Γ(S/JG)) → 0,

where

Ω(S/JG) = ωm+n+1(ωm+n+1(S/JG)) and Γ(S/JG) = ωm+n(ωm+n+1(S/JG)).

Now we show that Γ(S/JG)) = 0. This follows since f is easily seen to be sur-
jective. That is, ωm+n+1(S/JG) is a (m+n+1)-dimensional Cohen-Macaulay
module. Moreover f is a split homomorphism and therefore Ω(S/JG) ' S/JG̃
By duality this implies that ωm+n+1(S/JG) ∼= ω(S/JG̃). This completes the
proof of the statements in (b). By similar arguments the other cases for (m,n)
different of (n+1, n) and (2n−2, n) can be proved. We omit the details. Clearly
regS/JG = 2 as follows by (b).

As a next sample of our considerations let us consider the case of the
complete bipartite graph Km,n with (m,n) = (n+ 1, n).

Theorem 4.3. Let m = n+ 1 and n > 3. Then:

(a) regS/JG = 2.

(b) ωi(S/JG) = 0 if and only if i 6∈ {n + 2, n + 3, 2n, 2n + 2} and there are
the following isomorphisms and integers

i ωi(S/JG) depthωi(S/JG) dimωi(S/JG)
n+ 2 ωn+1(S/(JG̃, Bn+1)) n+ 1 n+ 1
n+ 3 ωn+2(S/(JG̃, An)) n+ 2 n+ 2

2n S/Bn+1(−2n) 2n 2n
2n+ 2 ω(S/JG̃)⊕ S/An(−2n− 2) 2n+ 2 2n+ 2.

Proof. By applying the local cohomology functors H ·(−) to the exact sequence
(2) in Corollary 3.3 we get the following:

(1) Hn+3(S/JG̃ ∩An) ∼= Hn+2(S/(JG̃, An)),

(2) H2n+2(S/JG̃ ∩An) ∼= H2n+2(S/JG̃)⊕H2n+2(S/An) and

(3) Hi(S/JG̃ ∩An) = 0 for i 6= n+ 2, 2n+ 2.

Similarly, if we apply H ·(−) to the exact sequence (3) in Corollary 3.3 we get
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(4) Hn+2(S/JG̃ ∩Bn+1) ∼= Hn+1(S/(JG̃, Bn+1)).

(5) H2n(S/JG̃ ∩Bn+1) ∼= H2n(S/Bn+1).

(6) H2n+2(S/JG̃ ∩Bn+1) ∼= H2n+2(S/JG̃).

(7) Hi(S/JG̃ ∩Bn+1) = 0 for i 6= n+ 2, 2n, 2n+ 2.

With these results in mind the short exact sequence (1) of Corollary 3.3 pro-
vides (by applying the local cohomology functor) the vanishing Hi(S/JG) = 0
for all i 6= n+ 2, n+ 3, 2n, 2n+ 2. Moreover it induces isomorphisms

Hn+2(S/JG) ∼= Hn+1(S/(JG̃, Bn+1)) and H2n(S/JG) ∼= H2n(S/Bn+1)

and as n > 3 so 2n > n+3 the isomorphismHn+3(S/JG) ∼= Hn+2(S/(JG̃, An)).
Moreover we obtain the following short exact sequence

0→ H2n+2(S/JG)→ H2n+2(S/JG̃)⊕H2n+2(S/An)⊕H2n+2(S/JG̃)→

→ H2n+2(S/JG̃)→ 0.

By Local Duality this proves the first three rows in the table of statement (b).
By Local Duality we get also the the following short exact sequence

0→ ω(S/JG̃)→ ω(S/JG̃)⊕ ω(S/An)⊕ ω(S/JG̃)→ ω(S/JG)→ 0.

Note that we may write ω instead of ω2n+2 because all modules above are
canonical modules. First of all the short exact sequence provides that
depthω(S/JG) ≥ 2n + 1. By applying local cohomology and dualizing again
we get the following exact sequence

0→ ω2×(S/JG)→ S/JG̃ ⊕ S/An ⊕ S/JG̃
f→ S/JG̃ → ω2n+1(ω(S/JG))→ 0.

As in the proof of Theorem 4.1 we see that f is surjective. Therefore
ω2n+1(ω(S/JG)) = 0 and depthω(S/JG) = 2n + 2. Whence ω(S/JG) is a
(2n + 2)-dimensional Cohen-Macaulay module. Then f is a split surjection
and ω2×(S/JG) ∼= S/JG̃ ⊕ S/An. This implies the isomorphism ω(S/JG) ∼=
ω(S/JG̃) ⊕ ω(S/An) and this finishes the proof of (b). Clearly regS/JG =
2.

Theorem 4.4. Let m > 3 and n = 2. Then:

(a) regS/JG = 2.
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(b) ωi(S/JG) = 0 if and only if i 6∈ {4,m+ 2,m+ 3, 2m} and there are the
following isomorphisms and integers

i ωi(S/JG) depthωi(S/JG) dimωi(S/JG)
4 ω4((JG̃, Bm)/Bm) 4 4

m+ 2 ωm+1(S/(JG̃, A2)) m+ 1 m+ 1
m+ 3 ω(S/JG̃) m+ 3 m+ 3

2m S/A2(−2m) 2m 2m.

Moreover there is an isomorphism ω4(ω4(S/JG) ∼= (JG̃, Bm)/Bm.

Proof. By applying the local cohomology functors H ·(−) to the exact sequence
(2) in Corollary 3.3 we get the following:

(1) Hm+2(S/JG̃ ∩A2) ∼= Hm+1(S/(JG̃, A2)),

(2) Hm+3(S/JG̃ ∩A2) ∼= Hm+3(S/JG̃),

(3) H2m(S/JG̃ ∩A2) ∼= H2m(S/A2) and

(4) Hi(S/JG̃ ∩A2) = 0 for i 6= m+ 2,m+ 3, 2m.

Similarly, if we apply H ·(−) to the exact sequence (3) in Corollary 3.3 we get
the isomorphism Hm+3(S/JG̃ ∩Bm) ∼= Hm+3(S/JG̃) and the exact sequence

0→ H3(S/(JG̃, Bm))→ H4(S/JG̃ ∩Bm)→ H4(S/Bm)→ 0.

The short exact sequence on local cohomology induces the following exact
sequence

0→ ω4(S/Bm)→ ω4(S/JG̃ ∩Bm)→ ω3(S/(JG̃, Bm))→ 0

by Local Duality. Now we apply again local cohomology and taking into ac-
count that both ω4(S/Bm) and ω3(S/(JG̃, Bm)) are Cohen-Macaulay modules
of dimension 4 and 3 respectively. Then depthω4(S/JG̃ ∩ Bm)) ≥ 3. By ap-
plying local cohomology and dualizing again it induces the following exact
sequence

0→ ω4(ω4(S/JG̃∩Bm))→ S/Bm
f→ S/(JG̃, Bm)→ ω3(ω4(S/JG̃∩Bm))→ 0.

Now the homomorphism f is an epimorphism. ω3(ω4(S/JG̃∩Bm)) = 0. That
is depthω4(S/JG̃ ∩ Bm) = 4 and it is a Cohen-Macaulay module. Moreover
ω4(ω4(S/JG̃ ∩ Bm)) ∼= (JG̃, Bm)/Bm. With these results in mind the short
exact sequence (1) of Corollary 3.3 provides (by applying the local cohomology
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functor) the vanishing Hi(S/JG) = 0 for all i 6= 4,m+ 2,m+ 3, 2m. Moreover
it induces isomorphisms

H4(S/JG) ∼= H4(S/JG̃ ∩Bm), Hm+2(S/JG) ∼= Hm+1(S/(JG̃, A2))

and H2m(S/JG) ∼= H2m(S/A2). Moreover we obtain the following short exact
sequence

0→ Hm+3(S/JG)→ Hm+3(S/JG̃)⊕Hm+3(S/JG̃)→ Hm+3(S/JG̃)→ 0.

This implies the isomorphism ωm+3(S/JG) ∼= ω(S/JG̃).

As a final step we shall consider the case of the complete bipartite graph
Km,n with 2n = m + 2. In all of the previous examples we have the phe-
nomenon that ωi(S/JG) is either zero or a Cohen-Macaulay module with
i− 1 ≤ dimωi(S/JG) ≤ i for all i ∈ Z. and the canonical module ω(S/JG) =
ωd(S/JG), d = dimS/JG, is a d-dimensional Cohen-Macaulay module. For
2n = m+ 2 this is no longer true.

Theorem 4.5. Let m+ 2 = 2n and m > n+ 1. Then:

(a) regS/JG = 2.

(b) ωi(S/JG) = 0 if and only if i 6∈ {n+ 2,m+ 2 = 2n,m+ n+ 1, 2m} and
there are the following isomorphisms and integers

i ωi(S/JG) depthωi(S/JG) dimωi(S/JG)

n + 2 ωn+1(S/(JG̃, Bm)) n + 1 n + 1
m + 2 ωm+1(S/(JG̃, An))⊕ S/Bm(−2n) m + 1 m + 2

m + n + 1 ω(S/JG̃) m + n + 1 m + n + 1
2m S/An(−2m) 2m 2m.

Proof. It is easily seen that n + 2 < 2n = m + 2 < m + n + 1 < 2m. Then
the short exact sequences of Corollary 3.3 provide that Hi(S/JG) = 0 for all
i 6= n + 2,m + 2 = 2n,m + n + 1, 2m. Moreover, it induces the following
isomorphisms

(1) Hn+2(S/JG) ∼= Hn+1(S/(JG̃, Bm)),

(2) Hm+2(S/JG) ∼= Hm+1(S/(JG̃, An)⊕Hm+2(S/Bm),

(3) Hm+n+1(S/JG) ∼= Hm+n+1(S/JG̃) and

(4) H2m(S/JG) ∼= H2m(S/An).

This easily yields the statements in (a) and (b).
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The difference of the case handled in Theorem 4.5 is the fact the ωm+2(S/JG)
is not a Cohen-Macaulay module. It is the direct sum of two Cohen-Macaulay
modules of dimensions m+2 and m+1 respectively. In [10] a finitely generated
S-module M is called canonically Cohen-Macaulay module whenever ω(M) is
a Cohen-Macaulay module. Note that if M is a Cohen-Macaulay module, then
it is also a Cohen-Macaulay canonical module. The converse is not true.

Now we prove some corollaries about the Cohen-Macaulayness and related
properties.

Corollary 4.6. Let JG ⊂ S denote the binomial edge ideal of a complete
bipartite graph.

(a) S/JG is a Cohen-Macaulay canonical ring and depthωi(S/JG) ≥ i−1 for
all depthS/JG ≤ i ≤ dimS/JG. Moreover S/JG is a Cohen-Macaulay
ring if and only if (m,n) ∈ {(2, 1)(1, 1)}.

(b) S/JG is sequentially Cohen-Macaulay and not Cohen-Macaulay if and
only if n = 1 and m > 2 or n = m = 2.

Proof. By view of Theorems 4.1, 4.2, 4.3, 4.4 and 4.5 we get the statements
on the Cohen-Macaulayness of ω(S/JG) and the estimates of of the depth of
ωi(S/JG) for all possible bipartite graphs G. By Lemma 3.2 and Corollary
3.4 the claim on the Cohen-Macaulayness of S/JG is easily seen. Similar
arguments work for the sequentially Cohen-Macaulay property as it is easily
seen by the definition.

5 On the purity of the free resolution

In the following let Jr ⊂ S, r ≤ m + n, denote the binomial edge ideal cor-
responding to the complete graph on r vertices. As a technical tool for our
further investigations we need the following Lemma.

Lemma 5.1. (a) Let M denote a finitely generated graded S-module. Let
f = f1, . . . , fl denote an M -regular sequence of forms of degree 1. Then

TorSi (K,M/fM) ∼= ⊕lj=0 TorSi−j(K,M)(
l
j)(−j).

(b) TorSi (K,S/Jr) ∼= Kbi(r)(−i− 1) for i = 1, . . . , r − 1, where bi(r) = i
(
r
i+1

)
.

Proof. For the proof of the statement in (a) let l = 1 and f = f1. Then

the short exact sequence 0 → M(−1)
f→ M → M/fM → 0 provides an

isomorphism

TorSi (K,M/fM) ∼= TorSi (K,M)⊕ TorSi−1(K,M)(−1)
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for all i ∈ Z. By an easy induction argument this yields the isomorphisms in
(a). The statement in (b) is well-known since S/Jr has a linear resolution (see
e.g. [3, Exercise A2.19]).

For a certain technical reason we need the following Lemma that describes
the ideals JG̃ ∩An respectively JG̃ ∩Bm as binomial edge ideals.

Lemma 5.2. The ideal JG̃ ∩ An is the binomial edge ideal of the graph G
obtained by deleting all edges {i, j} of the complete graph on [n +m] vertices
such that n < i < j ≤ m+ n. Similarly JG̃ ∩Bm is the binomial edge ideal of
the graph where all the edges {i, j} of the complete graph on [n + m] vertices
such that 1 ≤ i < j ≤ n are deleted.

Proof. Let us consider the ideal JG̃ ∩An. Look at the primary decomposition
of the graph G. We have to find all ∅ 6= T ⊂ [n+m] such that c(T \{i}) < c(T )
for all i ∈ T . If T = {1, . . . , n}, then c(T ) = m > 1 and c(T \ {i}) = 1 for
all i. Let T ⊂ [n + m] denote a subset with T 6= {1, . . . , n}. Then it is easy
to see that the condition c(T \ {i}) < c(T ) for all i ∈ T can not be satisfied.
So the claim follows by Lemma 2.2. A similar consideration proves the case
of JG̃ ∩Bm.

As usual we define βi,j(M) = dimK TorSi (K,M)i+j , i, j ∈ Z, the graded
Betti numbers of M , a finitely generated S-module. Then regM = max{j ∈
Z|βi,j(M) 6= 0}. In the following we shall prove that S/JG has a pure resolu-
tion. Note that all the βi,j(S/JG) outside of the Betti table are zero.

Theorem 5.3. Let S/JG denote the binomial edge ideal of the complete bi-
partite graph Km,n. Then the Betti diagram has the following form

0 1 2 · · · p
0 1 0 0 · · · 0
1 0 mn 0 · · · 0
2 0 0 β2,2 · · · βp,2

where

p =

{
m, if n = 1 ;
2m+ n− 2, if m ≥ n > 1.

Proof. Because of the regularity and depth of S/JG, the non-vanishing part of
the Betti table is concentrated in the frame of the one given in the statement.
Clearly β0,0 = 1 and βi,0 = 0 for all i > 0. Furthermore β1,0 = β2,0 = 0.
Since JG is minimally generated by mn binomials we get that β1,1 = mn and
β1,2 = 0.
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In order to prove the statement we have to show that β2,1 = 0 because this
implies that βi,1 = 0 for all i ≥ 2 as a consequence of the minimality of the
free resolution. Here we have two cases:

Case(a): Let m ≥ n > 1. We take the short exact sequence (1) of
Corollary 3.3. It induces a graded homomorphism of degree zero

TorS2 (K,S/JG̃) = Kb2(m+n)(−3)→ TorS1 (K,S/JG) = Kmn(−2).

Therefore it is the zero homomorphism. On the other side it induces a homo-
morphism

TorS3 (K,S/JG̃) = Kb3(m+n)(−4)→ TorS2 (K,S/JG),

which is the zero homomorphism when restricted to degree 3 since regS/JG =
2. Therefore there is a short exact sequence of K-vector spaces

0→ TorS2 (K,S/JG)3 → TorS2 (K,S/JG̃ ∩An)3 ⊕ TorS2 (K,S/JG̃ ∩Bm)3 →

→ Kb2(m+n) → 0.

That is β2,1(S/JG) = β2,1(S/JG̃ ∩An) + β2,1(S/JG̃ ∩Bm)− b2(m+ n).
In the next step we shall compute β2,1(S/JG̃ ∩An) and β2,1(S/JG̃ ∩Bm).

We start with the first of them. To this end we use the short exact sequence
(2) of Corollary 3.3. At first we note that β1,2(S/JG̃ ∩ An) = 0 which is true
since JG̃ ∩ An is minimally generated by quadrics as follows by Lemma 5.2.
Because of

β3,0(S/JG̃ ∩An) = β3,0(S/JG̃) = β2,1(S/An) = 0

we get the following exact sequence of K-vector spaces.

0→ TorS3 (K,S/An)3 → TorS3 (K,S/(JG̃, An))3 → TorS2 (K,S/JG̃ ∩An)3 →
TorS2 (K,S/JG̃)3 → TorS2 (K,S/(JG̃, An))3 → 0.

By counting vector space dimensions this provides that

β2,1(S/JG̃ ∩An) = b2(m+ n) + β3,0(S/(JG̃, An))− β2,1(S/(JG̃, An))−
(
2n
3

)
.

Since (JG̃, An) = (Jm, An), where Jm = I(n + 1, . . . , n + m) we might use
Lemma 5.1 for the calculation of these dimensions. Therefore

TorS3 (K,S/(JG̃, An))3 ∼= TorS0 (K,S/Jm)
(2n

3 )
0 and

TorS2 (K,S/(JG̃, An))3 ∼= TorS2 (K,S/Jm)3 ⊕ TorS1 (K,S/Jm)
(2n

1 )
2 .
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Therefore β3,0(S/(JG̃, An)) =
(
2n
3

)
and β2,1(S/(JG̃, An)) = b2(m) + 2nb1(m).

Putting these integers together it follows that

β2,1(S/JG̃ ∩An) = b2(m+ n)− b2(m)− 2nb1(m).

Interchanging the rôles of m and n we derive a corresponding formula for
β2,1(S/JG̃ ∩Bm)), namely

β2,1(S/JG̃ ∩Bm) = b2(m+ n)− b2(n)− 2mb1(n)

Finally we use both expressions in the above formula in order to confirm that
β2,1(S/JG) vanishes.

Case(b): Let m > n = 1. Because JG̃ ∩ A1 = JG we might use exact
sequence (2) of Corollary 3.3. Since (JG̃, A1) = (I(2, . . . , n + m), A1) the

statements in Lemma 5.1 imply that TorS3 (K,S/(JG̃, A1))3 = 0. Whence
there is an exact sequence of K-vector spaces

0→ TorS2 (K,S/JG)3 → TorS2 (K,S/JG̃)3 ⊕ TorS2 (K,S/A1)3 →

→ TorS2 (K,S/(JG̃, A1))3 → 0.

Therefore β2,1(S/JG) = b2(m+1)−β2,1(S/(JG̃, A1)). Again by the statement
of Lemma 5.1 (a) it follows that β2,1(S/(JG̃, A1)) = b2(m) + 2b1(m). Finally

β2,1(S/JG) = b2(m+ 1)− b2(m)− 2b1(m) = 0,

as required.

As a final feature of the investigations we will describe the explicit values
of the Betti numbers β2,i(S/JG), 2 ≤ i ≤ p, as they are indicated in Theorem
5.3.

Theorem 5.4. Let G = Km,n denote the complete bipartite graph with m ≥
n ≥ 1.

(a) The Hilbert function of S/JG is given by

H(S/JG, t) = 1
(1−t)m+n+1 (1 + (m+ n− 1)t) + 1

(1−t)2m + 1
(1−t)2n

− 1
(1−t)m+1 (1 + (m− 1)t)− 1

(1−t)n+1 (1 + (n− 1)t).

(b) For the multiplicity e(S/JG) it follows

e(S/JG) =

{
1, if m > n+ 1 or n = 1 and m > 2,

2m, otherwise.
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(c) Let n = 1. Then βi,2(S/JG) = m
(
m
i

)
−
(
m
i+1

)
−
(
m+1
i+1

)
for all 2 ≤ i ≤ p =

m. Let m ≥ n > 1. Then

βi,2(S/JG) =
(
m+n
i+2

)
+
(
2n
i+2

)
+
(
2m
i+2

)
+m

(
m+2n−1
i+1

)
+ n

(
2m+n−1
i+1

)
−
(
m+2n
i+2

)
−
(
2m+n
i+2

)
− (m+ n)

(
m+n−1
i+1

)
for all 2 ≤ i ≤ p = 2m+ n− 2.

Proof. In order to prove (a) we use the short exact sequences of Corollary 3.3.
By the additivity of the Hilbert series we get the following equalities:

H(S/JG, t) = H(S/JG̃ ∩An, t) +H(S/JG̃ ∩Bn, t)−H(S/JG̃, t),

H(S/JG̃ ∩An, t) = H(S/JG̃, t) +H(S/An, t)−H(S/(JG̃An), t), and

H(S/JG̃ ∩Bm, t) = H(S/JG̃, t) +H(S/Bm, t)−H(S/(JG̃Bm), t).

Substituting the Hilbert series of the complete graphs S/JG̃, S/(JG̃, An) and
S/(JG̃, Bm) as well as the Hilbert series of the polynomial rings S/An, S/Bm
we get the desired formula in (a). Then (b) is an easy consequence of (a).

For the proof of (c) we note at first the structure of the finite free resolution
of S/JG

0→ Sβp(−p− 2)→ · · · → Sβ3(−5)→ Sβ2(−4)→ Sβ1(−2)→ S

with β1 = mn βi = βi,2(S/JG), 2 ≤ i ≤ p, as shown in Theorem 5.3. By the
additivity of the Hilbert series this provides the following expression

H(S/JG, t) =
1

(1− t)2m+2n
(1− β1t2 +

p∑
i=2

(−1)iβit
i+2)

(see also [3, Exercise 19.14]). Now we use the expression of the Hilbert series
H(S/JG, t) as shown in (a) and compare it with the one of the minimal free
resolution. By some nasty calculations we derive the formulas for the Betti
numbers as given in the statement.
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