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ON THE SOLVABILITY IN LOCAL
EXTENSIONS

Akram Lbekkouri

Abstract

The aim of this paper is the study of the solvability of finite exten-
sions of local fields in the general case that is when the residue field is
not necessarily perfect.

1 Perfectness of residue fields in ramification theory

In case of a perfect residue field or at least when the residue extension is
assumed to be separable (ie. classical case) the ramification theory is well
studied for several decades.
However, in case of the residue field is assumed not to be necessarily perfect
and the residue extension not to be necessarily separable (ie. general case) one
has to redefine the notion of totally (wildly) ramification namely, the filtrations
upper and lower of the inertia group. Indeed, ramification theory in this case
remains an absolutely mysterious enigma with a lot of unsolved questions in
spite of the works of K.Kato, A.Abbes, T.Saito and many others.
By local field, we mean a complete field with respect to a discrete valuation,
hence its residue field can be infinite, even imperfect.
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1.1 Sketch on classical ramification

Let L/K be a finite galois extension of local fields. In this paragraph only,
the residue fields are assumed to be perfect or at least the residue extension
is assumed to be separable. In this case we can easily define two canonical
filtrations (Gi) (the lower ramification groups) and (Gi) (the upper ramifica-
tion groups) in G that are decreasing sequences of subgroups of G. The i− th
lower ramification group is defined to be Gi = {σ ∈ G;w(σ(α)−α) ≥ i+ 1 for
all α ∈ RL}, where RL is the ring of the discrete valuation w. The numbers i
such that Gi 6= Gi+1 are called ramification numbers (or jumps, breaks). The
two said filtrations are related by the Hasse-Herbrand functions φ and ψ used
to be calculated in terms of orders of Gi. Serre in ( [3] Ch : IV ), defined the
classical lower subgroups ramification filtration (above) as it is done in [4],
then by using the said functions he obtained an upper subgroups ramification
filtration (Gn)n≥1, related to each other by the formula (Gn = Gφ(n))n≥1 and
(Gn = Gψ(n))n≥1 hence the knowing of the Gn is equivalent to the last one
of the Gn; nevertheless they behave very differently; the upper one behaves
well under quotient subgroups; meanwhile, the lower one behaves well under
taking subgroups.
It is worthy to note that the said filtrations are compatible with the subex-
tensions in L/K. In the sense that, if H is a normal subgroup of G, we can
get the filtrations relative to H by taking Hi = Gi

⋂
H for any i − th lower

ramification group ([3] Ch : 4 §.1 Proposition 2) and (G/H)v = (GvH)/H
for any number v ([3] Ch : 4 §.3 Proposition 14). Furthermore, if L/K is
abelian when the residue field is quasi-finite, we have that the ”upper” filtra-
tion of G is compatible with the reciprocity map θ : K? → G in the sense that
θ(Ui) = Gi for all i = 0, 1, ..., n, and (Ui) is the filtration of the units group
in K? . The compatibility of the ”upper” filtration of G with the class field
theory is studied in detail in ( [3] Ch : XV ).
Consequently, in classical case the solvability of G0 the inertia subgroup of G
can be easily proved ( [3] §.2 Ch : IV page:68 Corollary: 5 ), since the quotient
of any two successive lower ramification groups is abelian. In fact it is either
cyclic or a direct sum of groups of order p. Meanwhile, the solvability of G
itself requires the finiteness of the residue field, see Counter-example (1.1) that
follows.

Example 1.1. (Counter-example)
Consider any finite galois and non solvable extension L/Q whose galois group
is gal(L/Q) of course non solvable, which acts on a Laurent series in L((t)) by
acting on coefficients. Then we use L((t))/Q(t)) as a galois extension of local
fields. Its galois group is gal(L/Q) too and its inertia group is trivial.
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1.2 General case (Imperfect residue field)

First note that in the general case, a theory of upper numbering ramification
subgroups corresponding to a theory of the ”lower” ramification subgroups by
use of some means like the Hasse-Herbrand ϕ,ψ functions does not exist, till
now.
All that has been done is a ”lower” ramification theory which is obtained from
the double-filtration given in ([4]) see paragraph §.2.1 that comes. Meanwhile,
the ramification filtration in the group G does not determine that in H. In-
deed, for L/K a finite galois extension of local fields in the general case, RL
the discrete valuation ring of L may not be generated by only one element
over RK (ie. not necessarily monogenic), when we are in the inseparable case.

Example 1.2. Take the rings R1 = Fp[Xp, Y p] and R2 = Fp[X,Y ] with X
and Y transcendant over Fp. So, k = Fp(Xp, Y p) and l = Fp(X,Y ) define an
inseparable extension of fields L/K in characteristic p. It satisfies the property
that the ring R2 cannot be generated over R1 by only one element. Then
consider the rings of Witt vectors over R1 and R2 say WR(R1) and WR(R2).
L/K is the residue extension of the fraction fields L/K of the corresponding
rings of Witt vectors. Therefore, WR(R2) cannot be generated by only one
element over WR(R1), although L/K is a finite galois extension.

Moreover, recently for a theory of the upper numbering filtration, Abbes
and Saito made a different interpretation that can be generalized in the general
situation, giving rise to a quite well-behaved upper-number filtration. To
sum up, they define two decreasing filtrations by ramification groups on the
absolute galois group such that in the classical case where the residue field
is perfect, we recover the classical upper numbering filtration. The definition
uses rigid geometry and log-structures. See [1].

2 The question of solvability

Let L/K be a finite galois extension of any local fields. Write G = gal(L/K)
for its galois group, RL the discrete valuation ring and ML its maximal ideal.
Its degree splits such a way [L : K] = ef = etameewildfsepfinsep, (ewild and
finsep must be a power of p, etame is prime to p, meanwhile fsep need not be
necessarily prime to p).
Note that its residue extension L/K is normal, see for example ([3] Ch : 1
§.7 Proposition.20), but need not be separable. Furthermore, consider D the
set of all automorphisms of L unvarying all elements of K there is a natural
surjective homomorphism from ϕ : G→ D. Indeed, let g ∈ G, g preserves RL
as well as ML. Therefore g induces an automorphism of L = RL/ML. Since
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g fixes each element of K it fixes each element of K as well, the surjectivity
of ϕ is proved in the Proposition referred above.

2.1 A filtration of the inertia group

Let L/K be any finite galois extension of local fields (complete with discrete
valuation), with the respective rings of integers RK ⊂ RL, and the prime ideals
MK ⊂ML and residue fields K ⊂ L, G = gal(L/K) being the galois group.
The inertia group G0 is given by G0 = {σ ∈ G,∀x ∈ RL; (x− σ(x)) ∈ML}.
Here we give some outline of Zariski-Samuel ramification filtration. Anyway,
by use of a filtration coming from it we prove Proposition (2.1), that follows.
In ( [4]ch:V §.10 page 294) following Hilbert’s way in the definition of ramifi-
cation subgroups of the galois group, Zariski and Samuel define their filtration
as follows.
For any positive integer n ≥ 1, they define the n-th ramification group Gn
as the subset of G consisting of all automorphisms σ ∈ G such that σ(x) ≡
x modulo Mn+1

L for every x ∈ RL. Gn is then the kernel of the action on
RL/M

n
L. They establish that Gn are invariant subgroups of G, and the quo-

tients Gn/Gn+1 are abelian for n ≥ 1 see ( Lemma 1. page 295). Meanwhile,
G0/G1 need not be abelian in general case, see ( [4] page 297 Last line). In-
deed, there are extensions where finsep > 1 and e > 1 but for which there does
not exist a subgroup which can ”separate” ferocious from wild ramification.
So a second filtration Hn becomes necessary. To sum up, in the general case
the ramification filtration is a double-filtration.
By use of the homomorphism,

λ : G0 → L
?

σ 7→ λ(σ) = (σ(π)/π) = uσ
H1 is defined as its kernel that is the subgroup of all automorphisms σ in
G0 such that uσ ≡ 1 modulo ML; that is such that σ(π)− π ∈M2

L.
Likewise, Hi is defined to be the kernel of the homomorphism;
λi : Gi → (L,+)

σ 7→ λi(σ) = yσ
that is the subgroup of all automorphisms σ in Gi such that yσ ≡ 0 modulo
ML, where yσ is the integer yσ ∈ RL satisfying σ(π)− π = yσπ

i, that is such
that σ(π)− π ∈Mi

L.
It is clear that Gi ⊇ Hi for every i ≥ 1 the equality occurs when the residue
fields extension is separable. See ( [4] Ch: V §.10 page 296 ).
That is σ ∈ Hi implies that σ(x) ≡ x modulo Mi+1

L for every x ∈ RL. Hi is
then the kernel of the action on ML/M

i
L for i ≥ 1.

Applying this filtration for the particular case when the residue extension L/K
is separable (ie. the classical case), we have (Hn = Gn)n≥1.
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2.2 Results

Proposition 2.1. Let L/K be a finite galois extension of local fields with
imperfect residue class fields. Denote by G0 the inertia group of gal(L/K).
Then G0 is solvable, furthermore it is cyclic in characteristic zero case.

Proof. A uniformizer π of L being fixed and, let us fix a set of generators of
the residue field extension and their lifts u1, ..., un to RL. Put it another way,
RL is generated by π, u1, ..., un as an RK-algebra, where π has valuation 1,
and ui are units.
Consider the map:
G0 → K

?

g 7→ g(π)/π
it is clear that this is a homomorphism, write J1 for the kernel of this map,
it is too clear that J1 = H1 in Zariski-Samuel notation. Then again consider
the map:
J1 → K ⊕K ⊕ ...⊕K; (n+ 1 of them)

g 7→ ((g(π)− π)/π2, (g(u1)− u1)/π, ..., (g(un)− un)/π) where (g(α)− α)/πi

is the residue class of (g(α)−α)/πi mod π, that is also a homomorphism, and
J2 is the kernel. Then we continue to consider:
J2 → K ⊕K ⊕ ...⊕K; (n+ 1 of them)
g 7→ ((g(π)− π)/π3, (g(u1)− u1)/π2, ..., (g(un)− un)/π2),
and so on and so forth, till we get a trivial Jr. Of course this filtration
stabilizes, since RL ' lim←−RL/M

i
L

From this, in case of the residue fields have characteristic p > 0, it is clear that
J1 has a filtration by normal subgroups Ji where the subquotients Ji/Ji+1 are
p-elementary abelian groups as Ji/Ji+1 injectively maps to (1+Mi

L)/(1+Mi+1
L )

which is canonically isomorphic to (L,+) for i ≥ 1.

Furthermore, G0/J1 is cyclic as it injectively maps to R?L/(1+ML) ' (L
?
,×),

as well as to AutL(ML/M
2
L) ' (L

?
,×) too, and the field L is of characteristic

p (remark the order of G0/T1 is prime to p if p ≥ 3). Worthy to note that
the maximal tamely ramified subfield T of L corresponds to the group GT =
G0 ∩ J1 = J1 . Finally, J1 is a p-group of order ewildfinsep, therefore its
solvability implies the last one of G0.
In case of the residue fields are of characteristic zero, since for i ≥ 1 the
subquotients Ji/Ji+1 are isomorphic to a subgroup of (L,+), considered as an
additive group. (L,+) having no finite subgroup except {0} therefore the Ji
are trivial for all i ≥ 1 in consequence G0 is cyclic. Which ends the proof.

The result of the solvability of the inertia group can be deduced from the
work of I.B.Zhukov in [2] but not for the general case. Indeed, he added the
strong hypothesis that [K : K

p
] = p where k is the residue field, that this K is
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particularly assumed to be a two-dimensional local field.

Remark 2.2. It is well known, since Hilbert’s time, that G/G0 has order fsep,
where G0 is the inertia group. Furthermore, one can always find a normal
subgroup G1 of G0 of order ewildfinsep. Meanwhile the existence of a normal
subgroup of G1 of order ewild or finsep is not assured. By other words, the wild
ramification and ferociously ramification need not be necessarily, ”separated”
in two different extensions.

Proposition 2.3. Let K be a local field, and let L/K be a finite galois exten-
sion. Then L/K is solvable if and only if the maximal separable subextension
of L/K is solvable.

Proof. Consider G = gal(L/K), and G0 its inertia group. By use of the
current notations the isomorphism induced by the surjective homomorphism
ϕ defined above, makes G/G0 isomorphic to the galois group of the maximal
separable subextension of L/K which equals D. From (2.1) G0 is solvable, the
well known result of classical group theory ”G is solvable if and only if G/G0

and G0 both of them are solvable” ends the proof.

Remark 2.4. Consequently, in the classical case that is when the residue
extension is assumed to be separable (particularly in case of perfect residue
fields) we have that the galois group of L/K is solvable if and only if the galois
group of L/K is solvable.

Furthermore, it is worthy to mention, the following result:
A field is called to be ”1-dimensional ” if it is complete with respect to its
discrete valuation and has a finite residue field, it is called to be ”2-dimensional
” if it is complete with respect to its discrete valuation and has a residue field
which is itself ”1-dimensional ”, and so on we can define an ”n-dimensional
” local field. Note that some authors require for the ”1-dimensional ” local
field to have only a perfect residue field. For our next corollary we require
necessarily its finitude.
Making use of Proposition (2.3) and since every finite extension of a finite field
is cyclic, by induction we can immediately deduce:

Corollary 2.5. Every finite galois extension of a ”n-dimensional ” local field
such that the residue field of the corresponding ”1-dimensional ” field is finite,
has necessarily a solvable galois group.

To sum up we get a generalization of Serre’s result in ( [3]Ch.IV
§.2 Corollary 5).



ON THE SOLVABILITY IN LOCAL EXTENSIONS 127

References

[1] A. Abbes and T. Saito, Ramification of local fields with imperfect
residue fields, Amer. J. Math. 124 (5) (2002), 879–920.

[2] I.B.ZHUKOV, On ramification theory in the imperfect residue field case,
Prepint No. 98-02, Nottingham Univ.,1998. Proceedings of the conference:
Ramification Theory of Arithmetic Schemes (Luminy,1999)(ed.B.Erez)
accessible on http://family239.narod.ru/math/publ.htm.

[3] J.P.SERRE, Local fields, Springer 1979.

[4] O.ZARISKI and P.SAMUEL, Commutative algebra, vol.I, Van Nos-
trand, Princeton, New Jersey, 1958 [Reprinted Springer-Verlag GTM 28
New York, 1960 ].

Akram LBEKKOURI,
BP: 10507
Casa-Bandoeng,
20002 Casablanca, Morocco.
Email: lbeka11@gmail.com



ON THE SOLVABILITY IN LOCAL EXTENSIONS 128


