

VERSITA Vol. 22(2),2014, 51–55

A Krull-Schmdit type theorem for coherent sheaves

A. S. Argáez

Abstract

Let X be projective variety over an algebraically closed field k and G be a finite group with g.c.d.(char(k), |G|) = 1. We prove that any representations of G on a coherent sheaf, $\rho : G \longrightarrow End(\mathcal{E})$, has a natural decomposition $\mathcal{E} \simeq \bigoplus V \otimes_k \mathcal{F}_V$, where G acts trivially on \mathcal{F}_V and the sum run over all irreducible representations of G over k.

1 Introduction

Let X be a complete variety over an algebraically closed field k and let G be a finite group with char(k) and |G| coprimes, thus the k-algebra k[G] is semisimple (not necessary commutative) of finite dimension |G| over k. Let $\mathcal{O}_X[G] := \mathcal{O}_X \otimes_k k[G]$. Thus, we can define the category **A** where the objects are $\mathcal{O}_X[G]$ -modules, which are defined as pairs consisting of an \mathcal{O}_X -module \mathcal{E} together with a k-morphism of rings $\rho : k[G] \to End(\mathcal{E})$ and the morphisms are defined in the natural way. Clearly this an Abelian category. We say that an $\mathcal{O}_X[G]$ -module \mathcal{E} is indecomposable if every direct decomposition of \mathcal{E} into $\mathcal{O}_X[G]$ -modules is trivial. From the Krull-Schmidt Theorem proved by Atiyah in [1], on a complete variety X every non-zero $\mathcal{O}_X[G]$ -module \mathcal{E} has a direct sum decomposition into indecomposable $\mathcal{O}_X[G]$ -modules and this decomposition is unique up to permutations. The objective of this paper is to prove the next structure theorem for $\mathcal{O}_X[G]$ -modules.

Key Words: Group representations on sheaves, Krull-Schmdit theorem, projective varieties. 2010 Mathematics Subject Classification: Primary 20F29; Secondary: 14A25

²⁰¹⁰ Mathematics Subject Classification: Primary 20F29; Secondary: 14A28 Received: April, 2012. Accepted: February, 2013.

Accepted: February, 2015

Theorem 1. Let X be a complete variety over an algebraically closed field k. Let \mathcal{E} be a coherent $\mathcal{O}_X[G]$ -module and suppose there is a surjective G-morphism

$$\mathfrak{F} \longrightarrow \mathfrak{E} \longrightarrow 0$$

with \mathcal{F} torsion free. Let $V_0, \ldots V_r$ be the irreducible representations of G over k. Then, there is a natural $\mathcal{O}_X[G]$ -isomorphism

$$\mathcal{E} \simeq (V_0 \otimes_k \mathcal{E}_{V_0}) \oplus \ldots \oplus (V_r \otimes_k \mathcal{E}_{V_r})$$

where the action of G on \mathcal{E}_{V_i} is trivial for all *i*. In particular, if X is a projective variety, this is true for any coherent $\mathcal{O}_X[G]$ -module.

2 Proof of Theorem 1

Lemma 1. Let k be an algebraically closed field and G be a finite group. Then, for any field extension K of k, any K-representation of G is of the form $V \otimes_k K$ with V a k-representation of G, unique up to G-isomorphisms.

Proof. It is sufficient to prove the lemma for irreducible representations. By the corollary 3.61 in [2] page 68, any representation of the form $V \otimes_k K$ is irreducible over K if V is irreducible over k, and by theorem 30.15 in [3] page 214 all those are different irreducible representations, then those are all the irreducible representations.

Definition 1. Let X be an integral scheme over an algebraically closed field k, K be the function field of X and ϵ be the generic point. Let \mathcal{E} be a torsion free coherent $\mathcal{O}_X[G]$ -module, and $\mathcal{E}_{\epsilon} \simeq V \otimes_k K$ be the representation of G at the generic point, we define the type of the representation of G on \mathcal{E} as the isomorphisms class of the representation V. Also, if \mathcal{G} is any $\mathcal{O}_X[G]$ -module, we define the isotypical decomposition of \mathcal{G} by the decomposition

$$\mathfrak{G} = e_0 \mathfrak{G} \oplus \ldots \oplus e_r \mathfrak{G}$$

where $\{e_i\}$ are the respective idempotents of k[G]. Notice that e_V define an exact functor from \mathcal{A} to \mathcal{A} .

Now, the type of the representation and the isotypical decomposition are related by

Lemma 2. Let X be a variety over an algebraically closed field k, K be its function field and ϵ be the generic point. Let \mathcal{E} be a torsion free coherent $\mathcal{O}_X[G]$ -module of type V. Then

$$e_i(\mathcal{E}_{\epsilon}) = e_i(V \otimes_k K) = (e_i \mathcal{E})_{\epsilon}$$

where e_i is the idempotent element on k[G] corresponding to the representation V_i . Furthermore, the isotytpical decomposition of the K[G]-module \mathcal{E}_{ϵ} is given by

$$\mathcal{E}_{\epsilon} = V \otimes_k K = \bigoplus_{i=0}^{\prime} (e_i \mathcal{E})_{\epsilon}$$

Proof. The first part of the theorem is an immediately consequence of the properties of the stalk at a point. The second part follows from lemma 1. \Box

Lemma 3. (Characterization of free torsion $\mathcal{O}_X[G]$ -modules) Let X be a complete variety over an algebraically closed field k, let \mathcal{E} be an indecomposable torsion free coherent $\mathcal{O}_X[G]$ -module of W type. Then $\mathcal{E} \simeq V \otimes_k \mathcal{F}$ with \mathcal{F} an indecomposable \mathcal{O}_X -module and $W \simeq V^{\oplus rank\mathcal{F}}$, with V an irreducible representation.

In particular, if \mathfrak{G} is a torsion free coherent $\mathfrak{O}_X[G]$ -module of type $V_0^{n_0} \oplus \ldots \oplus V_r^{n_r}$. Then the isotypical decomposition of \mathfrak{G} is given by

$$\mathfrak{G} \simeq (V_0 \otimes_k \mathfrak{G}_{V_0}) \oplus \ldots \oplus (V_r \otimes_k \mathfrak{G}_{V_r})$$

where \mathcal{G}_{V_i} is an \mathcal{O}_X -module of rank n_i .

Proof. As X is a complete variety, we can apply the Krull-Schmidt theorem for coherent sheaves proved in [1]. Thus, let $\mathcal{E} = \mathcal{F}_1^{\oplus n_1} \oplus ... \oplus \mathcal{F}_r^{\oplus n_r}$ be the unique decomposition of \mathcal{E} into indecomposable \mathcal{O}_X -modules with $\mathcal{F}_i \neq \mathcal{F}_j$, if $i \neq j$. Hence, if $g \in G$, $g\mathcal{E} = g\mathcal{F}_1^{\oplus n_1} \oplus ... \oplus g\mathcal{F}_r^{\oplus n_r}$ imply $g\mathcal{F}_i = \mathcal{F}_j$ for some j, then $\mathcal{F}_i \simeq \mathcal{F}_j$ and i = j. Now, any $\mathcal{F}_i^{\oplus n_i}$ must be G-invariant but \mathcal{E} is an indecomposable $\mathcal{O}_X[G]$ -module so r = 1 and $\mathcal{E} = \mathcal{F}^{\oplus n}$ with \mathcal{F} an indecomposable \mathcal{O}_X -module.

Let W the type of the representation, therefore, $W \simeq V^{\oplus s}$ with V irreducible. Thus, the next step is to show that $s = \operatorname{rank} \mathcal{F}$ and $\dim V = n$. For this, we consider the part of type V_0 of $V^{\vee} \otimes_k \mathcal{E}$, where V^{\vee} is the dual representation of V, this is a direct summand of $V^{\vee} \otimes_k \mathcal{E} \simeq \mathcal{F}^{\oplus n \cdot \dim V}$, so this component must be $\mathcal{F}^{\oplus i}$ for some *i*. Now, taking the composition of the canonical inclusion of $\mathcal{O}_X[G]$ -module

$$V \otimes_k \mathfrak{F}^{\oplus i} \simeq (V \otimes_k \mathfrak{F})^{\oplus i} \longrightarrow (V \otimes_k V^{\vee}) \otimes_k \mathcal{E}$$

with the canonical map

$$(V \otimes_k V^{\vee}) \otimes_k \mathcal{E} \longrightarrow \mathcal{E}$$

we have an $\mathcal{O}_X[G]$ -morphism

$$\alpha: (V \otimes_k \mathcal{F})^{\oplus i} \longrightarrow \mathcal{E} \simeq \mathcal{F}^{\oplus n}$$

that is a K[G]-isomorphism at the generic point, so $n = i \cdot \dim(V)$. Now, \mathcal{F} is torsion free, so α must be injective and we can apply the last corollary in [1], this corollary claim that, over a complete variety, an injective endomorphism is an isomorphism, but we are supposing that \mathcal{E} is an indecomposable $\mathcal{O}_X[G]$ module, then i = 1 and $\mathcal{E} \simeq V \otimes_k \mathcal{F}$ and the theorem follows.

Now we have

Proof of Theorem 1 From the hypotheses we have and exact sequence of $\mathcal{O}_X[G]$ -modules

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{F} \longrightarrow \mathcal{E} \longrightarrow 0,$$

with \mathcal{F} a coherent torsion free sheaf, thus we have that \mathcal{K} is torsion free. On the other hand, for each $T \in \mathcal{I}$ we have an exact sequence

$$0 \longrightarrow e_T(\mathcal{K}) \longrightarrow e_T(\mathcal{F}) \longrightarrow e_T(\mathcal{E}) \longrightarrow 0$$

and from Lemma 2 above, there are unique sheaves \mathcal{K}_T and \mathcal{F}_T such that $e_T(\mathcal{K}) \simeq T \otimes \mathcal{K}_T$ and $e_T(\mathcal{F}) \simeq T \otimes \mathcal{F}_T$, thus we have the exact sequence

$$0 \longrightarrow T \otimes_k \mathfrak{K}_T \longrightarrow T \otimes_k \mathfrak{F}_T \longrightarrow e_T(\mathcal{E}) \longrightarrow 0 \tag{1}$$

applying the exact functor $e_0(T^{\vee} \otimes_k \overline{\ })$ we obtain

$$0 \longrightarrow \mathfrak{K}_T \longrightarrow \mathfrak{F}_T \longrightarrow e_0(T^{\vee} \otimes_k e_T(\mathcal{E})) \longrightarrow 0$$

and applying $T \otimes_k$ _

$$0 \longrightarrow T \otimes_k \mathfrak{K}_T \longrightarrow T \otimes_k \mathfrak{F}_T \longrightarrow T \otimes_k e_0(T^{\vee} \otimes_k e_T(\mathcal{E})) \longrightarrow 0$$
 (2)

but the first morphism in sequences 1 and 2 are the same, then both have the same cokernel, then $e_T(\mathcal{E}) \simeq T \otimes_k e_0(T^{\vee} \otimes_k e_T(\mathcal{E}))$ and the first part of the Theorem is proved.

On the other hand, if X is projective, for any coherent sheaf $\mathcal E$ there is an exact sequence

$$\widehat{\mathcal{F}} \stackrel{\phi}{\longrightarrow} \mathcal{E} \longrightarrow 0$$

of \mathcal{O}_X -modules with $\widehat{\mathcal{F}}$ locally free (see [5] II 5.18). Therefore, when \mathcal{E} is an $\mathcal{O}_X[G]$ -module, we can construct an exact sequence of $\mathcal{O}_X[G]$ -modules

$$\mathcal{F} \xrightarrow{\phi} \mathcal{E} \longrightarrow 0$$

with $\mathcal{F} = k[G] \otimes \widehat{\mathcal{F}}, \ \phi(\sum a \cdot g) \otimes f \mapsto \sum a \cdot g \widehat{\phi}(f)$. Then the Theorem follows. \Box

References

- M. F. Atiyah On the Krull-Schmidt theorem with applications to sheaves Bulletin de la S. M. F.,tome 84 (1956), p.307-317.
- [2] C. W. Curtis & I. Reiner, Methods of representation theory I, Wiley, New York, 1981.
- [3] C. W. Curtis & I. Reiner, Representation theory of finite groups and associative algebras Wiley, 1962.
- [4] W. Fulton & J. Harris, Representation theory: A first course, Springer-Verlag. 1991.
- [5] Harstshorne R. Algebraic Geometry, Springer-Verlag, New York.

A. S. Argáez Department of Mathematics, Universida Autónoma "Benito Juárez" de Oaxaca, Av Universidad s/n Oaxaca de Juárez, México. Email: as_argaez@yahoo.com.mx

56