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On the factorization of polynomials over
discrete valuation domains

Doru Ştefănescu

Abstract

We study some factorization properties for univariate polynomials
with coefficients in a discrete valuation domain (A, v). We use some
properties of the Newton index of a polynomial F (X) =

∑d
i=0 aiX

d−i ∈
A[X] to deduce conditions on v(ai) that allow us to find some informa-
tion on the degree of the factors of F .

1 Introduction

One of the oldest irreducibility criterion for univariate polynomials with co-
efficients in a valuation domain was given by G. Dumas [10] as a valuation
approach to Schönemann-Eisenstein’s criterion for polynomials with integer
coefficients ([21] and [11]).

Theorem 1.1. Let F (X) =
∑d

i=0 aiX
d−i be a polynomial over a discrete

valuation domain A, with valued field (K, v). If the following conditions are

fulfilled

i) v(a0) = 0 ,

ii) v(ad)
d < v(ai)

i for all i ∈ {1, 2, . . . , d− 1},

iii) (v(ad), d) = 1,

then the polynomial F (X) is irreducible in K[X].
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There are many recent results that provide irreducibility conditions for
various classes of polynomials by using techniques coming from valuation the-
ory (see for instance [23], [24], [2], [3], [4], [8], [5] and [9]), or Newton polygon
method (see for instance [12], [13], [14], [15], [16], [17], [18], [1], [6], [7], [22]
and [25]).

In this paper we will consider univariate polynomials F (X) =
∑d

i=0 aiX
d−i

with coefficients in a discrete valuation domain (A, v), and we will study
some of their factorization properties by using information on the quotients
v(a0)−v(ai)

i . The results obtained for such polynomials are related to the ir-
reducibility criteria of Schönemann, Eisenstein, Dumas and their generaliza-
tions, but also to the irreducibility of generalized difference polynomials (see
for instance [20] and [19]).

Throughout this paper we will suppose that v(a0) = 0. Our results will
require the use of the Newton index of the polynomial F , which is defined by

e(F ) = max
1≤i≤d

v(a0)− v(ai)

i
.

We note here that the value of the Newton index in Dumas’ theorem and
its extensions is attained for the couple (d, v(ad)) , so the Newton index of the
polynomial F is in this case −v(ad)/d . In this paper we will also consider the
case in which the maximum in the definition of e(F ) may be attained for an
index i 6= d.

2 Main results

With the notations in previous section, we have

Proposition 2.1. If F1 F2 ∈ A[X] \A then

e(F1F2) = max (e(F1), e(F2)) .

Proof: We remind that one may associate to the polynomial F its Newton
polygon N(F ) defined as the lower convex hull of the set of points

{(0, v(ad)), (1, v(ad−1)), . . . , (d, v(a0))}

By the celebrated theorem of Dumas [10], we know that if F = F1F2 is a
nontrivial factorization of F in A[X], then the edges of the Newton polygon
of F can be constructed through translates of those of the Newton polygons
N(F1) and N(F2), using exactly one translate for each edge, in such a way as
to form a polygonal path with the slopes of the edges increasing.
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Using this result, it will be sufficient to observe that the quotient v(a0)−v(ai)
i

is the slope of the line joining the points (d, v(a0)) and (d−i, v(ai)) .

In the following result we will suppose that the Newton index of F is
attained for an index i ∈ {1, . . . , d}, fact that will not necessarily imply the
irreducibility of F , but will allow us in case F is reducible to obtain some
information on the degree of one of its factors.

Theorem 2.2. Let (A, v) be a discrete valuation domain, and let

F (X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad ∈ A[X].

Suppose that v(a0) = 0 and that there exists an index s ∈ {1, 2, . . . , d} such

that the following conditions are satisfied:

(a)
v(as)

s
<

v(ai)

i
for i ∈ {1, 2, ..., d}, i 6= s;

(b) sv(ad)− dv(as) = 1.

(c) (s, v(as)) = 1;

Then the polynomial F is either irreducible in A[X], or has a factor whose

degree is a multiple of s.

Proof: Let us assume that there exists a nontrivial factorization F = F1F2

of the polynomial F in A[X], and let us denote

d = degF, d1 = deg(F1) ≥ 1, d2 = deg(F2) ≥ 1,

and
m = v(ad), a = v(as).

We also put
m1 = v(F1(0)) and m2 = v(F2(0)).

With these notations, condition (b) reads

sm− ad = 1. (1)

Now, since condition (a) shows that e(F ) = −v(as)
s , and by Proposition 2.1

we have e(F ) = max{e(F1), e(F2)}, we first deduce that

−a

s
= −v(as)

s
= e(F ) ≥ e(F1) ≥ −v(F1(0))

d1
= −m1

d1
,

so we must have
ad1 ≤ sm1. (2)
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On the other hand, since

d = deg(F1F2) = deg(F1) + deg(F2) = d1 + d2

and

m = v(F1(0)F2(0)) = v(F1(0)) + v(F2(0)) = m1 + m2,

we see by (1) and (2) that

sm2 − ad2 ≤ sm− ad = 1.

Now, since

−a

s
= e(F ) ≥ e(F2) ≥ −m2

d2
,

we deduce that ad2 ≤ sm2, so we must have

0 ≤ sm2 − ad2 ≤ 1. (3)

Next, since sm2 − ad2 is an integer, (3) shows that it can only take the value
0 or 1, so we distinguish two cases:

Case 1: sm2− ad2 = 0. Here, since condition (b) implies in particular the
fact that a and s are coprime, we see that d2 must be divisible by s.

Case 2: sm2 − ad2 = 1. In this case we have s(m−m1)− a(d− d1) = 1,
which in view of (1) shows that sm1 = ad1, and since a and s are coprime, we
see now that d1 must be divisible by s.

Therefore, if the polynomial F is reducible, the degree of one of its factors
must be a multiple of s.

With the notations in Theorem 2.2, one has the following result.

Corollary 2.3. If d ≥ 4 and s > d/2, then the polynomial F is either

irreducible, or has a divisor of degree s.

Proof: If F would have a factor of degree ks, with k ≥ 2, then we would
obtain

d > ks > k
d

2
≥ d ,

a contradiction.
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3 Examples

1) Let F (X) = Xd + pd(p− 1)X2 + pd−2X + pd−1 ∈ Z[X], with d ≥ 3 and p
a prime number, and let us consider the usual p–adic value on Z, denoted by
v. Since

v(ad−1)

d− 1
=

d− 2

d− 1
<

d

d− 2
=

v(ad−2)

d− 2

and
v(ad−1)

d− 1
=

d− 2

d− 1
<

d− 1

d
=

v(ad)

d
,

we may take s = d−1, and since sv(ad)−dv(as) = (d−1)2−d(d−2) = 1, we
conclude by Theorem 2.2 that F is either irreducible, or has a factor of degree
d− 1, and hence also a linear factor. On the other hand, one may easily check
that F has no integer solutions, and hence is an irreducible polynomial.

2) Let F (X,Y ) = Y d + q(X)Y + r(X) ∈ Z[X,Y ] , where q, r ∈ Z[X] with
deg(q) = deg(r) = 1. Using now the discrete valuation on Z[X] given by
v(h) = −deg(h) for h ∈ Z[X], we see that

v(q)

d− 1
=
−1

d− 1
<
−1

d
=

v(r)

d
,

so with the notation in Theorem 2.2 we have s = d − 1. On the other hand,
using the same notation we observe that

sv(ad)− dv(as) = (d− 1)v(r)− dv(q) = 1.

It follows that F is either irreducible in Z[X,Y ], or has a linear factor with
respect to Y .

3) Let K be a field of characteristic zero, d ≥ 4 an integer, and let

F (X,Y ) = Y d + (Xd−2 + 1)Y 2 + (Xd +X + 1)Y +Xd+1 +X2 + 1 ∈ K[X,Y ].

We represent the polynomial F as

F (X,Y ) = Y d + ad−2(X)Y 2 + ad−1(X)Y + ad(X)

with ad−2(X) = Xd−2+1, ad−1(X) = Xd+X+1 and ad(X) = Xd+1+X2+1.
Using now the discrete valuation on K[X] given by v(h) = −deg(h) for h ∈
K[X], we observe that

v(ad−2)

d− 2
= −1,

v(ad−1)

d− 1
= − d

d− 1
and

v(ad)

d
= −d + 1

d
.

Therefore v(ad−1)
d−1 < v(ad−2)

d−2 and v(ad−1)
d−1 < v(ad)

d , so we may take s = d − 1,
and since sv(ad) − dv(as) = 1, we conclude by Theorem 2.2 that F is either
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irreducible in K[X,Y ], or has a factor whose degree with respect to Y is a
multiple of d− 1, that is F is either irreducible, or has a linear factor in Y .
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