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A PARAMETRIC NETWORK APPROACH
FOR CONCEPTS HIERARCHY

GENERATION IN TEXT CORPUS

L.SÂNGEORZAN, M.M.PARPALEA and M.PARPALEA

Abstract

The article presents a preflow approach for the parametric maximum
flow problem, derived from the rules of constructing concepts hierar-
chy in text corpus. Just as generating a taxonomy can be equivalently
reduced to ranking concepts within a text corpus according to a de-
fined criterion, the proposed preflow bipush-relabel algorithm computes
the maximum flow - the optimum flow that respects certain ranking
constraints. The parametric preflow algorithm for generating two level
concepts hierarchy in text corpus works in a parametric bipartite associ-
ation network and, on each step, the maximum possible amount of flow
is pushed along conditional augmenting two-arcs directed paths in the
parametric residual network, for the maximum interval of the parameter
values. The obtained parametric maximum flow generates concepts hi-
erarchies (taxonomies) in text corpus for different degrees of association
values described by the parameter values.

1 Introduction

In order to enhance search or browse features, large documents collections are
often organized in taxonomies concepts organized in hierarchical structures.
Because the manually created taxonomies are extremely time-consuming and
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costly, they are often incomplete and outdated. Thus, it is highly desirable
the taxonomies to be automatically generated. Generally, there are two ap-
proaches to taxonomy generation: the query-independent approach, offering a
consistent view of the whole corpus, and the query-dependent approach which
allows concepts to be organized differently depending on the query [8]. The ap-
proach presented in our paper focuses only on the query-dependent approach,
being based on statistical co-occurrence in determining the relationship be-
tween topics. The algorithm builds taxonomies where each topic is related
to distinct subtopics with different degrees of association values, described by
the parameter values. The special case of the maximum flow problem [1], [2]
in bipartite graphs is motivated by its many natural application problems [3].
Although the improved algorithms for unbalanced bipartite graphs have been
known for about 20 years, we are unaware of any published work that deals
with flow algorithms in parametric bipartite networks. Further on, the paper
is organized as follows: Section 2 deals with the basic terminology and some
results concerning flows in parametric networks; Section 3 presents some is-
sues related to the parametric bipartite concepts association network; Section
4 describes the parametric preflow bipush-relabel algorithm for the maximum
flow problem in bipartite networks with linear upper bound functions.

2 Flows in parametric networks

The parametric maximum flow problem is an extension of the classical max-
imum flow problem [5] in which the capacities of certain arcs are functions
of a parameter λ . The parametric maximum flow problem is to compute all
maximum flows for every possible value of the parameter.

2.1 Terminology and preliminaries

Let G = (N,A, u, s, t) be a capacitated network with n = |N | nodes and
m = |A| arcs, N being the set of nodes i and A being the set of arcs a, so
that every arc in A can be written as a = (i, j) with i, j ∈ N . The capacity
(upper bound) function is a nonnegative function, u(a) associated with each
arc a ∈ A. The network has two special nodes: a source node s and a sink node
t. A cut is a partition of the node set N into two subsets S and T = N − S,
denoted by [S, T ]. An arc (i, j) ∈ A with i ∈ S and j ∈ T is referred to as
a forward arc of the cut while an arc (i, j) ∈ A with i ∈ T and j ∈ S as a
backward arc of the cut. Let (S, T ) denote the set of forward arcs in the cut
and (T, S) denote the set of backward arcs. A cut [S, T ] is an s − t cut if
s ∈ S and t ∈ T . A network G is called bipartite if its node set N can be
partitioned into two subsets N1 and N2 such that all arcs have one endpoint in
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N1 and the other in N2. Let n1 ∈ |N1| and n2 ∈ |N2|. A bipartite network is
referred to as unbalanced if n1 � n2 or n2 � n1 and balanced otherwise. For
a bipartite network G, the extended network G̃ = (Ñ , Ã), with Ñ = N ∪{s, t}
and Ã = A ∪ {(s, j)|∀j ∈ N1} ∪ {(i, t)|∀i ∈ N2}, is constructed by adding two
special nodes, the source node s and the sink node t, considering that s ∈ |N2|
and t ∈ |N1|. For all arcs (s, j) and (i, t) the upper bounds of the arcs are
ũ(s, j) :=∞, respectively ũ(i, t) :=∞ while the upper bounds of all the other
arcs are ũ(i, i) := u(i, j).

2.2 The parametric maximum flow

The parametric flow problem consists in generalising the classic problem of
flows in networks by transforming the upper bounds of some arcs (i, j) ∈ A of
the network G = (N,A, u, s, t) in linear functions of a real parameter.

Definition 1. A directed network G = (N,A, u, s, t) for which the upper
bounds u of some arcs (i, j) ∈ A are functions of a real parameter λ is re-
ferred to as a parametric network and is denoted by Ḡ = (N,A, ū, s, t).

For a parametric network Ḡ, the parametric upper bound (capacity) func-
tion ū : A × [0,Λ] → <+ associates to each arc (i, j) ∈ A, for each of the
parameter values λ ∈ [0,Λ], the real number ū(i, j;λ), referred to as the para-
metric upper bound of arc (i, j): ū(i, j;λ) = u0(i, j) + λ · U(i, j), (i, j) ∈ A,
where U : A → < is a real valued function associating to each arc (i, j) ∈ A
the real number U(i, j) referred to as the parametric part of the upper bound
of the arc (i, j). The nonnegative value u0(i, j) is the upper bound of the arc
(i, j) for λ = 0, i.e. ū(i, j; 0) = u0(i, j) with 0 ≤ u0(i, j). For the problem to
be correctly formulated, the upper bound function of every arc (i, j) ∈ A must
respect the condition 0 ≤ ū(i, j;λ) for the entire interval of the parameter
values, i.e. ∀(i, j) ∈ A and ∀λ ∈ [0,Λ]. It follows that the parametric part of
the upper bounds U(i, j) must satisfy the constraint: U(i, j) ≥ −u0(i, j)/Λ,
∀(i, j) ∈ A.

The parametric flow value function v̄ : N × [0,Λ] → < associates to each
of the nodes i ∈ N a real number v̄(i;λ) referred to as the value of node i for
each of the parameter λ values.

Definition 2. A feasible flow in the parametric network Ḡ = (N,A, ū, s, t),
called parametric flow, is a function f̄ : A×[0,Λ]→ <+ satisfying the following
constraints:∑

j|(i,j)∈A

f̄(i, j;λ)−
∑

j|(j,i)∈A

f̄(j, i;λ) = v̄(i;λ), ∀i ∈ N, ∀λ ∈ [0,Λ], (1)

0 ≤ f̄(i, j;λ) ≤ ū(i, j;λ), ∀(i, j) ∈ A, ∀λ ∈ [0,Λ], (2)
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where
∑

i∈N v̄(i;λ) = 0, ∀λ ∈ [0,Λ].

The parametric maximum flow (PMF) problem is to compute all maximum
flows for every possible value of λ in [0,Λ] :

maximize v̄(λ) for all λ ∈ [0,Λ], (3)

∑
j|(i,j)∈A

f̄(i, j;λ)−
∑

j|(j,i)∈A

f̄(j, i;λ) =

 v̄(λ), i = s
0, i 6= s, t

−v̄(λ), i = t
(4)

0 ≤ f̄(i, j;λ) ≤ ū(i, j;λ), ∀(i, j) ∈ A. (5)

Definition 3. A parametric s − t cut partitioning denoted by [Sk; Jk], k =
0, . . . ,K, is defined as a finite set of cuts [Sk, Tk], k = 0, . . . ,K, together with
a partitioning of the interval [0,Λ] of the parameter in disjoints subintervals
Jk, k = 0, . . . ,K, so that J0 ∪ · · · ∪ JK = [0,Λ].

Definition 4. For the parametric maximum flow problem, the capacity
˜̄c[Sk; Jk] of a parametric s − t cut partitioning is a linear function on every
subinterval Jk, k = 0, . . . ,K, defined as:

˜̄c[Sk; Jk] =
∑

(i,j)∈(Sk,Tk)

ū(i, j;λ), k = 0, . . . ,K. (6)

Definition 5. A parametric s−t cut partitioning [Sk; Jk] with the subintervals
Jk assuring that every cut is a minimum cut [S̃k, T̃k] within the subinterval
[λk, λk+1] is referred to as a parametric minimum s− t cut and is denoted by
[S̃k; Jk], k = 0, . . . ,K.

Theorem 1. [5] The value function ˜̄v of the parametric maximum flow ˜̄f from
a source s to a sink t in network Ḡ equals the capacity ˜̄c of the parametric
minimum s− t cut [S̃k; Jk], k = 0, . . . ,K.

Definition 6. For the parametric maximum flow problem, the parametric
residual capacity ˜̄r(i, j;λ) of any of the arcs (i, j) ∈ A, with respect to a
given parametric flow f̄ , represents the maximum additional flow that can
be sent from node i to node j over the arcs (i, j) and (j, i) and is given by:
˜̄r(i, j;λ) = ū(i, j;λ)− f̄(i, j;λ) + f̄(j, i;λ).

Definition 7. The subintervals Ĩ(i, j) ⊆ [0,Λ] where an augmentation of
the flow f̄(i, j;λ) is possible along the arc (i, j) are defined as: Ĩ(i, j) =
{λ|˜̄r(i, j;λ) > 0}, (i, j) ∈ A.
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Definition 8. Given a feasible flow f̄ in the parametric network Ḡ, the net-

work denoted by ˜̄G(f̄) = (N, Ã(f̄)), with Ã(f̄) = {(i, j)|(i, j) ∈ A, Ĩ(i, j) 6= ∅}
being the set consisting only of arcs with positive parametric residual capaci-
ties, is referred to as the parametric residual network with respect to the given
flow f̄ for the parametric maximum flow problem.

If an arc (i, j) ∈ A does not belong to ˜̄G(f̄) then Ĩ(i, j) := ∅ is set.

Definition 9. The parametric excess of a node i ∈ N is defined as:

ē(i;λ) =
∑

j|(j,i)∈A

f̄(j, i;λ)−
∑

j|(i,j)∈A

f̄(i, j;λ). (7)

Definition 10. The sets Ĩ(i) = {λ|ē(i;λ) > 0} for i ∈ N − {s, t} describe
subintervals of [0,Λ] where the excess of node i is positive.

In the residual network ˜̄G(f̄) the distance function d̃ : N → ℵ is a function
from the set of nodes to the nonnegative integers. A distance function is said
to be valid if it satisfies the following conditions: d̃(t) = 0 and d̃(i) ≤ d̃(j) + 1,
∀(i, j) ∈ Ã.

Definition 11. An arc (i, j) ∈ Ã in the parametric residual network ˜̄G(f̄) is
referred to as conditionlly admissible if both d̃(i) = d̃(j)+1 and Ĩ(i, j)

⋂
Ĩ(i) 6=

∅; otherwise it is conditionally inadmissible.

3 Concepts association network

The first step of concepts hierarchy generation in text corpus consists in ex-
tracting a set of candidate concepts from the corpus and computing the co-
occurrences between concepts. Based on the most frequent concepts appearing
in the titles, the set of candidate concepts can be easily obtained. For each
concept pair, its co-occurrence within the document abstract can be also com-
puted.

Once the set of concepts is extracted and their co-occurrence is calculated,
the concepts association network, encompassing all concepts, is constructed.
The network is built as a bipartite directed graph G = (N1 ∪ N2, A) with
weighted arcs. Each concept ci is a node in G, i.e. ∀i ≤ n1 +n2, ci ∈ N1 ∪N2.
There exists an arc ai,j = (ci, ci) ∈ A between the topics ci and cj if and
only if ci co-occurs with cj in at least one document. The source node of the
extended bipartite network G = (N ∪ {s, t}, A) represents the topic of the
query-dependent taxonomy.
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The co-occurrences of the concepts pairs within documents are computed
as ρi,j = count(ci, cj), i.e. the number of documents that contain both ci and
ci in the title or document abstract.

The external degree of a concept ci, denoted by ki, represents the total
number of arcs emerging from node ci.

The strength of a concept, representing the concepts importance, is simply
the sum of all its co-occurrences:

σi =
∑

cj |(ci,cj)∈A

count(ci, cj). (8)

The parametric upper bound ū(ci, cj ;λ) = u0(ci, cj) +λ ·U(ci, cj) of an arc
(ci, cj) is computed as:

ū(ci, cj ;λ) =
σi
ki

+ λ · ρi,j , λ ∈ [0,Λ]. (9)

For any arc ai,j ∈ A of the bipartite network, the node (endpoint) cor-
responding to a concept ci with a greater strength σi belongs to subset N1

and the other one belongs to N2. For the extended network G̃ = (Ñ , Ã), con-
structed by adding the source and the sink nodes, the capacities of the arcs
(s, ci) are set to ū(s, ci) := σi while those of the arcs (cj , t) are ū(cj , t) :=∞.

4 Maximum flow problem in
bipartite parametric network

All push-relabel algorithms, maintaining a preflow at every stage, work by
examining active nodes and pushing excesses from these nodes to nodes esti-
mated to be closer to the sink t. If t is not reachable, however, an attempt is
made to push the deficit back to s. If eventually there will be no excess on
any node other than s, the preflow is a flow which is also a maximum one. A
push (augmentation of the flow on an arc) of δ(P̃ ;λ) units of flow over an arc
(i, j) ∈ P̃ is referred to as saturating if δ(P̃ ;λ) = ˜̄u(i, j;λ) and nonsaturat-
ing otherwise. A nonsaturating push from node i decrease the excess ē(i;λ)
to zero. The process of modifying the value of a distance label of a node is
referred to as a relabel operation.

Definition 12. A push of δ(P̃ ;λ) units of flow on a two arcs path P̃ =
((i, j), (j, k)) = (i, j, k) in the bipartite network with j ∈ N1 and i, k ∈ N2 is
referred to as a bipush.
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4.1 Conditional augmenting two-arcs directed paths in the residual
network

A conditional augmenting two-arcs directed path P̃ in ˜̄G(f̄) = (N, Ã) is a
directed path formed by two consecutive conditionally admissible arcs (i, j)
and (j, k) from the active node i, with j ∈ N1 and i, k ∈ N2, such that:

Ĩ(P̃ ) = Ĩ(i)
⋂
Ĩ(i, j)

⋂
Ĩ(j, k) 6= ∅. (10)

Theorem 2. If no conditional augmenting two-arcs directed path exists in
˜̄G( ˜̄f) then ˜̄f is a maximum parametric flow.

Proof. Suppose that no conditional augmenting two-arcs directed path exists

in ˜̄G( ˜̄f) and yet ˜̄f is not a maximum parametric flow, i.e., there exists λ∗ ∈
[0,Λ] such that v̄(λ∗) < ˜̄v(λ∗). Consequently, ˜̄f(λ∗) is therefore a feasible but
not maximum flow with respect to the fixed upper bounds ū(i, j;λ∗). Hence,

there exists an augmenting directed path P̃ with respect to ˜̄f(λ∗). But the

definition of ˜̄G( ˜̄f) yields that P̃ is also a conditional augmenting directed
path with Ĩ(P̃ ) = {λ∗} which contradicts the non-existence of a conditional

augmenting two-arcs directed path. Thus ˜̄f is a maximum parametric flow.

In order to avoid working with conditional augmenting two-arcs directed
paths, i.e. directed paths that respect the condition (10), our algorithm uses
a partitioning technique which allows him to work independently on each
subinterval of the value range of the parameter.

4.2 Parametric bipartite bipush-relabel (PBB) algorithm

Using a multi-thread parallel implementation, after computing the breakpoint
of a parametric residual capacity of a conditional decreasing two-arcs directed
path, the algorithm continues to run independently on each subinterval be-
tween two consecutive breakpoints, on independent threads.

In the INITIALISATION step of the algorithm, for each arc (s, i) ∈ Ã the
flow is set to its upper bound value, f̄(s, i;λ) := f̄(s, i;λ) and thus nodes i
become active nodes (i.e. ẽ(i;λ) := ū(s, i;λ)) and are added to a list L.

After the initialization step, the algorithm performs the BIPUSH proce-
dure for any selected node from the list L, while adding newly created active
nodes to L. The algorithm terminates when L becomes empty. The procedure
consecutively finds admissible two-arcs directed paths (i, j, k) and pushes the
flow over them. The step of pushing the flow, which augments the flow over
the two-arcs directed path with δ = min{ē(i;λ), r̄(i, j;λ), r̄(j, k;λ)}, consists
in the following:
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Ĩ(i) := Ĩ(i)− J1, Ĩ(i, j) := Ĩ(i, j)− J2, Ĩ(j, k) := Ĩ(j, k)− J3, Ĩ(k) := J1;
r̄(i, j;λ) := r̄(i, j;λ)− δ, r̄(j, i;λ) := r̄(j, i;λ) + δ;
r̄(j, k;λ) := r̄(j, k;λ)− δ, r̄(k, j;λ) := r̄(k, j;λ) + δ;

ē(i;λ) := ē(i;λ)− δ, ē(k;λ) := ē(k;λ) + δ, δ =


ē(i;λ), for λ ∈ J1
r̄(i, j;λ), for λ ∈ J2
r̄(j, k;λ), for λ ∈ J3

.

During each stage of pushing of flow, the range of parameter values is
partitioned in the subintervals J1 := {λ|ē(i;λ) ≤ min{r̄(i, j;λ), r̄(j, k;λ)}},
J2 := {λ|r̄(i, j;λ) ≤ min{ē(i;λ), r̄(j, k;λ)}} and J3 := J − (J1

⋃
J2) within

which the algorithm independently reiterates.
Putting all together, the parametric bipartite preflow bipush-relabel (PBB)
algorithm can be written as:

ALGORITHM PBB

INITIALISATION

BIPUSH (L, [0,Λ])

The algorithm starts with Ĩ(i, j) = [0,Λ] for all arcs (i, j) ∈ A and stops
when the residual network contains no active nodes.

Theorem 3. (Theorem of correctness) The parametric bipartite preflow bipush-
relabel (PBB) algorithm computes correctly a parametric maximum flow.

Proof. The proof of the theorem follows from the correctness of the preflow
bipush-relabel algorithm for each of the subintervals of the parameter values.
When the algorithm terminates, let Sp be the set of all nodes which are reach-
able from the source node s within the subinterval Jp. For the resulting cuts
[Sp, Tp] and the intervals Jp, p = 1, 2, · · ·K, the following observations hold:

(i) IF i ∈ Sp, j ∈ Tp and (i, j) ∈ A THEN Jp
⋂
Ĩ(i, j) = ∅ for otherwise node

j could be reached from s in ˜̄G( ˜̄f). Hence, ˜̄f(i, j;λ) = ū(i, j;λ); ∀λ ∈ Jp, by

the definition of Ĩ(i, j) = 0.
(ii) IF i ∈ Tp, j ∈ Sp and (i, j) ∈ A THEN Jp

⋂
Ĩ(j, i) = ∅ for otherwise node i

could be reached from s in ˜̄G( ˜̄f). Hence, ˜̄f(i, j;λ) = 0; ∀λ ∈ Jp. Summarizing,∑
(i,j)∈(Sp,Tp)

˜̄f(i, j;λ) =
∑

(i,j)∈(Sp,Tp)
ū(i, j;λ) and

∑
(i,j)∈(Tp,Sp)

˜̄f(i, j;λ) =
0, thus the obtained flow is a parametric maximum flow which equals the
parametric capacity of the minimum s− t cut.

4.3 Complexity issues

A breakpoint is a place where the slope of the optimal value function of a para-
metric optimization problem is changing. One approach to express complexity
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of a parametric problem is to count the number of breakpoints (K). Unfortu-
nately, in the worst case the number of breakpoints may be exponential in the
size of the problem. The example originates from the pathological graph of
Zadeh [6] which was used to show that the complexity may be exponential.
For the parametric maximum flow problem in bipartite networks however
the parametric bipartite preflow bipush-relabel (PBB) algorithm overcomes
this inconvenient by using the multi-thread parallel implementation of a non-
parametric approach. The main idea of this implementation is to assign a
thread to each newly generated subinterval which will carry out the problem
forward from the current configuration of the problem. Each thread continues
the problem on its own subinterval separately from all the others without any
need of synchronizing. The only common variables are the distance labels and,
with the purpose to achieve the above independence of the threads, for each of
the new generated subintervals a copy of the current distance labels values is
generated so that they can be independently modified in the further parallel
evolution of the algorithm.

Theorem 4. (Theorem of complexity) The parametric bipartite preflow bipush-
relabel (PBB) algorithm solves the parametric maximum flow problem in O(n32+
n2m+Kn) time.

Proof. The initialization procedure and the computation of the exact distance
labels are performed in O(n2) and O(m) time respectively. The complexity of
the non-parametric bipush-relabel algorithm, equal to the complexity of the
parametric one for a non-partitioned subinterval of the parameter values is
O(n32 + n2m). New copies of distance labels values are generated every time
a breakpoint occurs, i.e. copying distance labels takes O(Kn) time where K
is the number of breakpoints. Thus, the total complexity of the algorithm is
O(n32 + n2m+Kn).

5 Conclusions

Based on the parametric maximum flow, the sets Sk, k = 0, ...,K, generated
by the parametric s− t cut partitioning, gather the concepts in classes which
are ordered in hierarchies, i.e. taxonomy. Thus, maximum flow problem in
parametric networks turns out to be an important scenario in practice since
the complexity of its solving algorithm can be reduced to that of the equivalent
non-parametric algorithm considering the approach of network partitioning.
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