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BRINKMAN − FORCHHEIMER − DARCY
FLOW PAST AN IMPERMEABLE SPHERE

EMBEDDED IN A POROUS MEDIUM

Gheorghe Juncu

Abstract

The flow past an impermeable sphere embedded in a fluid satu-
rated porous medium was studied numerically considering valid the
Brinkman−Forchheimer−Darcy (or Brinkman−Hazen−Dupuit−Darcy)
model. The flow is viscous, laminar, axisymmetric, steady and incom-
pressible. The porous medium is isotropic, rigid and homogeneous. The
stream function - vorticity equations were solved numerically in spher-
ical coordinates system by a multigrid method. The influence of the
Darcy number and Forchheimer term on the velocities field was inves-
tigated for two boundary conditions on the surface of the sphere: slip
and no - slip.

1 Introduction

Flow in a fluid saturated porous medium has broad applications in many
environmental, industrial and life science processes. The mathematical models
for flow in fluid saturated porous media are well discussed and presented by
Bear & Bachmat [1], Kaviany [8] , Lage [9] and Nield & Bejan [11]. An
exhaustive presentation of these models is outside the aims of the present
work.
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Many hundreds of papers deal with flow in fluid saturated porous medium
but only few considered flow around solid inclusions embedded in a porous
medium. Analytical solutions for the Darcy flow past an impervious sphere
embedded in a fluid saturated porous medium can be viewed in Romero [13]
and Feng & Michaelides [6]. In these articles, the slip condition is satisfied
on the surface of the sphere. The incompressible steady viscous flow past a
sphere embedded in a constant porosity medium using the Brinkman model
with no slip boundary condition on the surface of the sphere was analysed
by Brinkman [4], Berman [2], Pop & Ingham [12], Ganapathy [7], Charya &
Murthy [5] and Wang [15]. In these articles, an analytical exact solution for
the stream function was obtained for the case when the velocity far away from
the sphere is uniform. The axisymmetric steady incompressible flow past an
impermeable sphere embedded in a porous medium using the Brinkman model
with a uniform shear instead of a uniform velocity far away from the sphere
and no slip boundary condition was investigated by Rudraiah et al. [14].

An analytic solution for the problem of the incompressible steady viscous
flow past an impermeable cylinder / sphere embedded in a porous medium
using the Brinkman model with Navier boundary condition on the surface
of the sphere was obtained by Leont’ev [10]. Leont’ev [10] considers that
setting the no - slip condition when using the seepage equations with higher
spatial derivatives (Brinkman, Darcy Lapwood Brinkman and other models)
is generally inadequate.

Thus, for the flow past an impervious sphere embedded in a fluid satu-
rated porous medium only the Darcy and Brinkman models were used. The
aim of this work is the numerical analysis of the flow past an impermeable
sphere embedded in a fluid saturated porous medium using the Brinkman -
Forchheimer - Darcy model. This problem was not investigated until now.
The present computations are focused on the influence of the Darcy number
and Forchheimer term on the velocities field for different values of the sphere
Reynolds number and two boundary conditions on the surface of the sphere:
slip and no - slip.

This paper is organized as follows. In Sect. 2 we describe the mathemat-
ical model of the problem. Section 3 presents the numerical algorithm. The
numerical experiments made and the results obtained are presented in Sect.
4. Finally, some concluding remarks are briefly mentioned in Sect. 5.

2 Model Equations

Consider the laminar, viscous, steady, axisymmetric, incompressible flow of
a Newtonian fluid with a superficial velocity U0 past an impervious sphere
embedded in a porous medium with permeability K. The porous medium is
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rigid, isotropic, homogeneous and fluid saturated. The following additional
assumptions are considered valid:

- during the flow, the volume and shape of the sphere are constant;

- surface tension effects are considered negligible;

- the physical properties of the sphere and ambient porous medium are
uniform, isotropic and constant;

- no phase change.

Under these assumptions, the dimensionless Brinkman - Forchheimer - Darcy
model equations (the radius of the sphere, a, is considered as the length scale
and the free stream velocity, U0, as the velocity scale) are:

- continuity equation
∇ · V = 0 (1)

- momentum equation

−∇p+
2

Re
∇2V − ε

2ReDa
V − εCF

2Da1/2
||V ||V = 0 (2)

where V is the Darcy dimensionless velocity vector V = (VR, Vθ), p is the
dimensionless local average pressure, ε is the porosity of the porous medium,
CF the Forchheimer constant and

Da =
K

d2
, Re =

U0dρ

µ
, ||V || =

√
V 2
R + V 2

θ .

In the previous relations d is the diameter of the sphere, d = 2a, µ is the
dynamic viscosity of the fluid and ρ is the density of the fluid. Also, the
Darcy and sphere Reynolds numbers are symbolized by Da and Re.

For axisymmetric flow, the dimensionless vorticity vector

ζ = ∇× V

has only one non-zero component, i.e.

ζ =
∂Vθ
∂r
− 1

r

∂VR
∂θ

+
Vθ
r

(3)

Defining the dimensionless stream function by,

VR = − 1

r2 sin θ

∂ψ

∂θ
, Vθ =

1

r sin θ

∂ψ

∂r
(4)
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and eliminating VR and Vθ from (3) and (4), we obtain the stream function
equation in dimensionless spherical coordinate system (r, θ) as,

∂2ψ

∂r2
+

sin θ

r2
∂

∂θ

(
1

r sin θ

∂ψ

∂r

)
= ζr sin θ. (5)

Using the relation
∇2V = ∇∇ · V −∇× (∇× V ),

the momentum equation (2) can be rewritten as,

−∇p+
2

Re
∇× ζ − ε

2ReDa
V − εCF

2Da1/2
||V ||V = 0 (6)

Applying the curl operator to equation (6) and taking into consideration that

∇×∇p = 0, ∇× (fV ) = f∇× V +∇f × V,

for any scalar function f , it results, in dimensionless spherical coordinate sys-
tem (r, θ),

∂2ζ

∂r2
+2

∂ζ

∂r
+

1

r2

(
∂2ζ

∂θ2
+ cot θ

∂ζ

∂θ
− ζ

sin2 θ

)
− ε

4Da
ζ− εCFRe

4Da1/2
(||V ||ζ+∇||V ||×V ) = 0

(7)
The boundary conditions are:

- axis of symmetry, θ = 0, π,

ψ = ζ = 0 (8)

- surface of the sphere, r = 1,

(i) no - slip

ψ =
∂ψ

∂r
= 0, (9)

(ii) slip

ψ = 0, ζ =
1

sin θ

1 + 2β

β

∂ψ

∂r
, (10)

- free stream, r →∞,

∂

∂r

(
ψ − 1

2
r2 sin2 θ

)
= 0, ζ = 0. (11)

where β is the dimensionless slip coefficient, [10] (β = 0 means no slip while
β →∞ means perfect slip). A value of β between these two limits corresponds
to partial slip on the surface of the sphere. The present mathematical model
is composed by equations (5), (7) and boundary conditions (8),(9),(10),(11).
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3 Method of Solution

The mathematical model equations were solved numerically. The radial coor-
dinate r was replaced by x using the transformation r = exp(x). As a result,
the use of a constant discretization parameter for x made it possible to obtain
a more dense mesh near the surface of the sphere where the gradients are large
and where an accurate numerical approximation is needed. The central finite
difference scheme was used to discretize the equations of the mathematical
model.

The algorithm employed to solve the discrete equations is the classical
multigrid (MG) - Full Approximation Storage (FAS) algorithm, [3], suit-
able for both linear and nonlinear problems. The structure of the MG cy-
cle is: 1) cycle of type V; 2) two smoothing steps are performed before
the coarse grid correction and one after; 3) prolongation by bilinear inter-
polation for corrections; 4) restriction of residuals by full weighting. Two
smoothing algorithms were tested: point Gauss Seidel (PGS) and alternating
line Gauss - Seidel (ALGS). The spatial discretization steps on the coars-
est grid are, ∆θ = π/32,∆x = 1/32. Numerical experiments were made
on fine meshes with the discretization steps, ∆θ = π/128,∆x = 1/128,
∆θ = π/256,∆x = 1/256, and ∆θ = π/512,∆x = 1/512. The error crite-
rion employed is: the discrete L2 norm of the residuals is smaller than 10−8.
It must be also mentioned that the numerical algorithm converged for all pa-
rameters values employed in the numerical experiments made.

4 Results

The dimensionless parameters of the Brinkman - Forchheimer - Darcy model
are: CF , Da,Re and ε. The numerical results presented in this section were
obtained for numerical values of the Re number in the range Re ≤ 10.

The value considered in this work for ε is, ε = 0.9. This selection does not
restrict the area of interest of the present results. The Darcy number, Da,
takes values in the range, Da ≤ 10. The value considered for the Forchheimer
constant is, CF = 0.55. The numerical experiments made focus on the follow-
ing problem: the influence of the Darcy number and Forchheimer term on the
flow characteristics for the no slip or slip wall boundary condition. The nu-
merical results obtained for each boundary condition are presented separately.
The quantities used to analyse the present computations are the vorticity on
the surface of the sphere and the velocity profiles.
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4.1 No-slip boundary condition

From the beginning it must be mentioned that the solutions of the Brinkman
- Forchheimer - Darcy model have all the characteristics of the creeping flow
solutions (symmetric ζs, symmetric / antisymmetric velocities, and so on)
(the axis of symmetry / antisymmetry is θ = π/2). Under these conditions,
the influence of the Forchheimer term on the flow field will be investigated
comparing the present numerical results with the analytical solution of Wang
[15]. The analytical solution of Wang [15] was derived considering CF = 0.

Figure 1: The influence of the Da number on the surface vorticity for Re =
0.1, β = 0 (no - slip boundary condition) and ε = 0.9.

Figures 1 to 3 shows the influence of the Da number on the surface vorticity,
ζs, for Re = 0.1, 1, 10. The symbols from figures 1 to 3 refer to the analytical
solution of Wang [15]. The present numerical results are depicted as continuous
lines. The numerical data presented in figures 1 to 3 shows that:

- for a given Re number, the decrease in Da increases the values of the
surface vorticity;
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Figure 2: The influence of the Da number on the surface vorticity for Re = 1,
β = 0 (no - slip boundary condition) and ε = 0.9.

- the influence of the Forchheimer term increases with the increase in Re;
for Re = 0.1, 1, the agreement between the present numerical solutions
and the analytical solution of Wang [15] is very good;

- for Re = 10, the differences between the present numerical solutions and
the analytical solution of Wang [15] can not be considered negligible; the
decrease in Da amplifies these differences;

- for Re > 1 and a given Da number, the increase in Re increases the
values of the surface vorticity.

The velocity profiles provide additional information concerning the influence
of the Darcy and Forchheimer terms on the flow field. From the numerical
experiments made, the velocity profiles computed for Da = 0.001 and Re =
1, 10, were selected (figures 4 and 5). The symbols depicted in figures 4 and 5
were calculated with the analytical solution from [15].
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Figure 3: The influence of the Da number on the surface vorticity for Re =
10, β = 0 (no - slip boundary condition) and ε = 0.9.

From the numerical experiments made and the results presented in figures
4 and 5, the following observations can be made:

- the velocities vary from zero at the surface of the sphere to the asymp-
totic values of the unperturbed flow with the increase in r; the variation
of the tangential velocity is not monotonic for all situations; in some
cases, especially for small values of the Da number, there is a veloc-
ity overshoot near the surface of the sphere (the tangential velocity has
characteristic ears);

- the influence of the Da number on the velocity profiles is significant
only inside a viscous film that develops on the surface of the sphere; the
decrease in Da decreases the thickness of the viscous film;

- the Forchheimer term increases the gradient of the tangential velocity
near the surface of the sphere; this increase becomes significant for Re >
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Figure 4: Radial velocity profiles for β = 0 (no-slip boundary condition),
Da = 0.001, Re = 1, 10 and ε = 0.9.

1; the effect of the Forchheimer term on the radial velocity in the vicinity
of the surface of the sphere is negligible.

Thus, from the results presented in this section, the following conclusion can
be drawn:

- the effect of the Forchheimer term on the velocity profiles is significant
only for Re > 1; the decrease in Da amplifies this effect; for Re ≤ 1, the
analytical solution of Wang [15] can be used to calculate the velocities
field.

4.2 Slip boundary condition

The numerical results presented in this section were calculated for β = 1. As
for the case β = 0 (i.e. no - slip boundary condition), it must be mentioned
that the solutions of the Brinkman - Forchheimer - Darcy model have the
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Figure 5: Tangential velocity profiles for β = 0 (no-slip boundary condition),
Da = 0.001, Re = 1, 10 and ε = 0.9.

characteristics of the creeping flow solutions (symmetric ζs, symmetric / an-
tisymmetric velocities, and so on) (the axis of symmetry / antisymmetry is
θ = π/2). The comparison criterion employed for slip boundary condition is
the analytical solutions from [10]. The analytical solution of Leont’ev [10] was
obtained for the case CF = 0.

The influence of the Da number on the surface vorticity, ζs, for Re =
0.1, 1, 10 can be viewed in figures 6,7,8. The velocity profiles computed for
Da = 0.001, 1 and Re = 10 are plotted in figures 9 and 10. The symbols
depicted in figures 6-10 represent the results provided by the analytical solution
of Leont’ev [10]. The present numerical results are plotted as continuous lines.

Figures 6-10 show that the Darcy number and Forchheimer term have
similar and distinct effects on the flow field compared to the case of no-slip
boundary condition. The similar aspects are:

- the decrease in Da increases the values of the surface vorticity for all Re
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Figure 6: The influence of the Da number on the surface vorticity for Re =
0.1 , β = 1 and ε = 0.9.

number values;

- for Re = 0.1 the influence of the Forchheimer term on the surface vor-
ticity is negligible.

The distinct aspects are:

- for Re = 10 the influence of the Forchheimer term on the surface vorticity
is negligible for very small Da values; for Da = 0.001 and Re = 10
the agreement between the present numerical results and the analytical
solution of Leont’ev [10] is very good;

- the case Re = 1 can be viewed as an intermediary one between the cases
Re = 0.1 and Re = 10.

It must be mentioned that the influence of the Darcy and Forchheimer terms on
the tangential surface velocity is similar to that observed for surface vorticity;
the decrease in Da increases the values of the tangential surface velocity.
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Figure 7: The influence of the Da number on the surface vorticity for Re = 1,
β = 1 and ε = 0.9.

As was mentioned at the beginning of this section, the results discussed
previously were computed for β = 1. Numerical experiments were also made
for β = 0.03125, 0.0625, 0.125, 0.5 and ∞. The numerical results obtained are
similar to those calculated with β = 1. However, as expected, the differences
between the present results and the analytical solution from [10] increase when
β decreases. For example, for Re = 10 and Da = 0.001, the relative differences
between the present results and the analytical solution of Leont’ev [10] are:
(1) for β = ∞, approximately 1%; (2) for β = 0.5, smaller than 1%; (3) for
β = 0.125, approximately 3%; (4) for β = 0.0615, approximately 5%; (5) for
β = 0.03125, approximately 7%.

Based on these numerical results, we may summarize that the effect of the
Forchheimer term on the velocity profiles can be considered negligible for slip
boundary conditions if:

- DaRe < 0.1for Re ≥ 1 and β ≥ 0.1;
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- Re < 1.

Under these conditions, the analytical solution of Leont’ev [10] can be used to
calculate the velocity profiles.

Figure 8: The influence of the Da number on the surface vorticity for different
Re numbers, β = 1 and ε = 0.9.

5 Conclusions

The objective pursued in this work is the numerical solution of the flow past an
impermeable sphere embedded in a fluid saturated porous medium using the
Brinkman−Forchheimer−Darcy model. The influence of the Da number and
Forchheimer constant on the flow characteristics was investigated for sphere
Re number in the range, Re ≤ 10, and two types of boundary conditions on
the surface of the sphere: slip and no - slip.

The numerical results presented in the previous section show that for no
slip boundary conditions the influence of the Forchheimer term becomes sig-



BRINKMAN−FORCHHEIMER−DARCY FLOW PAST AN IMPERMEABLE
SPHERE EMBEDDED IN A POROUS MEDIUM 110

Figure 9: Radial velocity profiles for β = 1, Da = 0.001, 1, Re = 10 and
ε = 0.9.

nificant for Re > 1. For Re ≤ 1, the agreement between the present numerical
results and the analytical solution of Wang [15] is very good. For slip boundary
condition, the effect of the Forchheimer term on the velocity profiles depends
on β, Da and Re values. It is negligible when DaRe < 0.1 (Re ≥ 1 and
β ≥ 0.1) and Re < 1. When these conditions are satisfied, the analytical
solution of Leont’ev [10] can be used.
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