
DOI: 10.1515/auom-2015-0041
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Complete spacelike hypersurfaces with positive
r-th mean curvature in a semi-Riemannian

warped product

Yaning Wang and Ximin Liu

Abstract

In this paper, by supposing a natural comparison inequality on the
positive r-th mean curvatures of the hypersurface, we obtain some new
Bernstein-type theorems for complete spacelike hypersurfaces immersed
in a semi-Riemannian warped product of constant sectional curvature.
Generalizing the above results, under a restriction on the sectional cur-
vature or the Ricci curvature tensor of the fiber of a warped product,
we also prove some new rigidity theorems in semi-Riemannian warped
products. Our main results extend some recent Bernstein-type theorems
proved in [12, 13, 14].

1 Introduction

One of the basic problems on spacelike hypersurfaces is the problem of unique-
ness of spacelike hypersurfaces with constant mean curvature, more generally,
that of spacelike hypersurfaces with geometric condition which is characterized
by higher order mean curvature. The aim of this paper is to study such type
problem of spacelike hypersurfaces immersed in a semi-Riemannian warped
product. Before giving details of our main results, we shall first present a brief
outline of some recent papers concerning uniqueness theorems related to ours.
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By applying a key lemma proved in [11], F. Camargo, A. Caminha and H.
F. De Lima [12] proved some Bernstein-type theorems concerning complete
and connected spacelike hypersurfaces in steady state-type spacetimes and
hyperbolic-type spaces. Generalizing the above results, A. G. Colares and H.
F. de Lima [13] obtained some rigidity theorems in semi-Riemannian warped
products.

Later, by replacing null convergence condition by (ln f)′′ ≤ 0, L. J. Aĺılas,
D. Impera and M. Rigoli [5] obtained uniqueness theorems concerning com-
pact spacelike hypersurfaces with constant higher order mean curvature im-
mersed in a spatially closed generalized Robertson-Walker spacetime. They
also investigated the uniqueness of complete spacelike hypersurfaces by using
a generalization of the Omori-Yau maximal principal. We also refer the reader
to [2, 4] for some relevant results concerning higher order mean curvature.

Recently, by supposing a natural comparison inequality between the r-th
mean curvatures of the hypersurface immersed in a semi-Riemannian warped
product, H. F. de Lima and J. R. de Lima [14] proved a uniqueness theorem
with the null convergence condition, i.e., k ≥ supI(ff ′′ − f ′2). In fact, there
is a little mistake in the proof of Theorem 1.1 of [14], we give the details
about that mistake (see Remark 5.1) in section 5. Note that the conclusion of
Theorem 1.1 in [14] still holds if we correct an inequality in the assumption of
this theorem.

In this paper, following [2] and [5] we consider the action of the second or-
der linear differential operator Lr (see section 2) on the integral of the warping
function, which makes us to obtain some more accurate estimates. It is worth
to point out that the Laplacian of integral of the warping function was studied
by the present authors in [20, 21] to obtain some uniqueness results. Through-
out this paper, we denote by L(Σn) the space of Lebesgue integrable functions
on spacelike hypersurface Σn. Then, by applying a result proved by Caminha-
Sousa-Camargo [11] and supposing a natural comparison inequality between
the r-th mean curvature of a hypersurface, we obtain new Bernstein-type the-
orem (whose proof can be seen in section 4) as follows.

Theorem 1.1. Let M
n+1

= −I×fM
n be a Lorentzian warped product of con-

stant sectional curvature. Let ψ : Σn → M
n+1

be a complete and connected
spacelike hypersurface with bounded second fundamental form and bounded

away from the infinity of M
n+1

. Suppose that Hr and Hr+1 are positive for
some 1 ≤ r ≤ n− 1 such that

Hr+1

Hr
≥ f ′

f
(h) > 0. (1)

If h has local minimum on Σn and |∇h| ∈ L(Σn), then Σn is a slice of M
n+1

.
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With regard to spacelike hypersurfaces in Robertson-Walker spacetimes, we
also obtain the following rigidity result which generalizes the above Theorem
1.1.

Theorem 1.2. Let M
n+1

= −I ×f M
n be a Robertson-Walker spacetime

whose Riemannian fiber Mn has constant sectional curvature k satisfying

k ≤ inf
I

(ff ′′ − f ′2). (2)

Let ψ : Σn → M
n+1

be a complete and connected spacelike hypersurface with
the bounded second fundamental form and bounded away from the infinity of

M
n+1

. Suppose that Hr and Hr+1 are positive for some 1 ≤ r ≤ n − 1 and
satisfy (1). If h has local minimum on Σn and |∇h| ∈ L(Σn), then Σn is a

slice of M
n+1

.

This paper is organized as follows. We shall first recall some notations and
collect some basic facts in a preliminaries section, then some key lemmas used
to prove our main rigidity theorems are given in section 3. Section 4 is devoted
to proving some uniqueness theorems and their corollaries concerning hyper-
surfaces in semi-Riemannian warped product of constant sectional curvature.
Finally, in section 5, we obtain some generalizations of the results proved in
section 4 concerning hypersurfaces in semi-Riemannian warped products. The
Riemannian version of Theorem 1.1 and 1.2 are given in section 4 and 5 re-
spectively. Some applications of our main results on some physical models are
also presented in section 4 and 5 respectively.

2 Preliminaries

In this section, following [5, 6] we shall recall some basic notations and facts
that will appear along this paper. We first introduce some notations on Rie-
mannian immersions in semi-Riemannian manifolds.

Let M
n+1

be a connected semi-Riemannian manifold with metric g = 〈 , 〉
for index ν ≤ 1 and ∇ be the semi-Riemannian connection. In what follows,

we consider Riemannian immersion ψ : Σn → M
n+1

, and we orient Σn by
the choice of a unit normal vector field N on it. We denote by A the shape
operator of ψ. For 0 ≤ r ≤ n, let Sr(p) be the r-th elementary symmetric
function of the eigenvalues of Ap for p ∈ Σn. Then Sr : Σn → R is given as
follows

det(tI −A) =

n∑
k=0

(−1)kSkt
n−k,



Complete spacelike hypersurfaces with positive r-th mean curvature 262

where S0 = 1 by the definition. If p ∈ Σn and {ei} is a basis of TpΣn formed by
eigenvectors of Ap with corresponding eigenvalues {λk}, one can immediately
get

Sr = σr(λ1, · · · , λn),

where σr ∈ R[X1, · · · , Xn] is the r-th elementary symmetric polynomial on
the indeterminates X1, · · · , Xn. Also, for 0 ≤ r ≤ n we define the r-th mean
curvature Hr of ψ by

Cr
nHr = εrNSr = σr(εNλ1, · · · , εNλn).

It is easy to see that H0 = 1 and H1 is the usual mean curvature H of Σn.
We also notice that the Hilbert-Schmidt norm of the shape operator A of Σn

is given by
|A|2 = n2H2 − n(n− 1)H2. (3)

We may define the r-th Newton transformation Pr on Σn by setting P0 = I
(the identity operator) for 0 ≤ r ≤ n via the recurrence relation

Pr = εrNSrI − εNAPr−1. (4)

A trivial induction shows that

Pr = εrN (SrI − Sr−1A+ Sr−2A
2 − · · ·+ (−1)rAr),

so that the Cayley-Hamilton theorem gives Pn = 0. Moreover, since Pr is
a polynomial in A for every r, it is also self-adjoint and commutes with A.
Therefore, all basis of TpΣn diagonalizing A at p ∈ Σn also diagonalize all of
the Pr at p. Let {ei} be such the basis. Denote by Ai the restriction of A to
〈ei〉⊥ ⊂ TpΣn, it is easy to see that

det(tI −Ai) =

n∑
k=0

(−1)kSk(Ai)t
n−1−k,

where
Sk(Ai) =

∑
1≤j1<···<jk≤n

j1···jk 6=i

λj1 · · ·λjk .

From [8], it is also immediate to check that Prei = εrNSr(Ai)ei, then an
easy computation gives the following result.

Lemma 2.1 (Lemma 2.1 of [8]). With above notations, the following formulas
hold:

(a) Sr(Ai) = Sr − λiSr−1(Ai).
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(b) tr(Pr) = εrN
n∑

i=1

Sr(Ai) = εrN (n− r)Sr = brHr.

(c) tr(APr) = εrN
n∑

i=1

λiSr(Ai) = εrN (r + 1)Sr+1 = εNbrHr+1.

(d) tr(A2Pr) = εrN
n∑

i=1

λ2
iSr(Ai) = εrN (S1Sr+1 − (r + 2)Sr+2),

where br = (n− r)Cr
n.

Associated to each Newton transformation Pr one has the second order
linear differential operator Lr : D(Σn)→ D(Σn) given by

Lr(f) = tr(Pr ◦Hessf), (5)

where D(Σn) denotes the set of all smooth functions on Σn. In particular,
L0 = ∆ and from [10] we know that if M has constant sectional curvature,
then Lr(f) = div(Pr∇f), where div denotes the divergence on Σn.

For a smooth function ϕ : R → R and h ∈ D(Σn), it follows from the
properties of the Hessian of functions that

Lr(ϕ ◦ h) = ϕ′(h)Lr(h) + ϕ′′(h)〈Pr∇h,∇h〉. (6)

Now, we give some facts on semi-Riemannian warped products. Let Mn

be a connected, n-dimensional (n ≥ 2) oriented Riemannian manifold, I ⊆ R
an open interval and f : I → R a positive smooth function. We consider the
product differential manifold I×Mn and denote by πI and πM the projections
onto the base I and the fiber Mn, respectively. A particular class of semi-
Riemannian manifolds is the one obtained by furnishing I × Mn with the
metric

〈v, w〉p = ε〈(πI)∗v, (πI)∗w〉+ (f ◦ πI(p))2〈(πM )∗v, (πM )∗w〉,

for all p ∈Mn+1
and all v, w ∈ TpM

n+1
, where ε = ε∂t

and ∂t is the standard
unit vector field tangent to I and f is known as the warping function and we

denote the space by M
n+1

= εI ×f M
n. In particular, −I ×f M

n is called a
Robertson-Walker spacetime if Mn has constant sectional curvature. Accord-
ing to Proposition 42 of [19], we know that a generalized Robertson-Walker
spacetime has constant sectional curvature k if and only if, the Riemannian
fiber Mn has constant sectional curvature k and the warping function f sat-
isfies the following differential equation

f ′′

f
= k =

f ′2 + k

f2
. (7)

It follows from [17] that the vector field (f ◦ πI)∂t is conformal and closed
(in this sense that its dual 1-form is closed) with conformal factor φ = f ′ ◦πI ,
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where the prime denotes differentiation with respect to t ∈ I. For t0 ∈ I,
we orient the slice Σn

t0 := {t0} ×Mn by using the unit normal vector field
∂t, then from [6, 17] we know that Σn

t0 has constant r-th mean curvature

Hr = −ε
( f ′(t0)

f(t0)

)r
with respect to ∂t.

A smooth immersion ψ : Σn → εI ×f M
n of an n-dimensional connected

manifold Σn is said to be a spacelike hypersurface if the induced metric via
ψ is a Riemannian metric on Σn. Let ψ be a Riemannian immersion with
Σn oriented by the unit vector field N , one obviously has ε = ε∂t = εN . We
denote by h the vertical (height) function naturally attached to Σn defined by
h = (πI)|Σn .

We denote by∇ and∇ the gradient with respect to the metrics of εI×fM
n

and Σn respectively. Then by a simple computation we have the gradient of
πI on εI ×f M

n which is given by

∇πI = ε〈∇πI , ∂t〉 = ε∂t, (8)

and the gradient of h on Σn is given by

∇h = (∇πI)> = ε∂>t = ε∂t − 〈N, ∂t〉N. (9)

In particular, we have
|∇h|2 = ε(1− 〈N, ∂t〉2), (10)

where | · | denotes the norm of a vector field on Σn.

3 Key Lemmas

We give some important lemmas in order to prove our main theorems. First,
following a simple computation we have

Lr(f) =tr(Pr ◦Hessf) =

n∑
i=1

〈Pr(∇ei∇f), ei〉

=

n∑
i=1

〈∇ei∇f, Pr(ei)〉 =

n∑
i=1

〈∇Pr(ei)∇f, ei〉 = tr(Hessf ◦ Pr),

(11)

where {e1, · · · , en} is a local orthonormal frame on Σn. It follows from [10]
that

divΣ(Pr(∇f)) =

n∑
i=1

〈(∇eiPr)∇f, ei〉+

n∑
i=1

〈Pr(∇ei∇f), ei〉

= 〈divPr,∇f〉+ Lr(f),

(12)
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where the divergence of Pr on Σn is given by

divPr = tr(∇Pr) =

n∑
i=1

(∇eiPr)(ei). (13)

From relation (12) we know that the operator Lr is elliptic if and only if
Pr is positive definite. Notice that L0 = ∆ is always elliptic. The following
two lemmas were proved by L. J. Aĺıas and A. G. Colares [2] in which the
authors gave some geometric conditions for guaranteeing the ellipticity of L1

and Lr for 2 ≤ r ≤ n, respectively.

Lemma 3.1 (Lemma 3.2 of [2]). Let ψ : Σn → M
n+1

be a Riemannian

immersion in a semi-Riemannian manifold M
n+1

. If H2 > 0 on Σn, then L1

is elliptic or, equivalently, P1 is positive definite for an appropriate choice of
the Gauss map N .

Lemma 3.2 (Lemma 3.3 of [2]). Let ψ : Σn → M
n+1

be a Riemannian

immersion in a semi-Riemannian manifold M
n+1

. If there exists an elliptic
point of Σn, with respect to an appropriate choice of the Gauss map N , and
Hr+1 > 0 on Σn for 2 ≤ r ≤ n − 1, then for all 1 ≤ k ≤ r the operator Lk

is elliptic or, equivalently, Pk is positive definite (for an appropriate choice of
the Gauss map N , if k is odd).

Notice that when we say p0 ∈ Σn being an elliptic point in a semi-

Riemannian immersion ψ : Σn → M
n+1

into a semi-Riemannian manifold

M
n+1

, we mean that all principal curvatures λi(p0) of this point have the same
sign. Moreover, we also need a sufficient condition to guarantee the existence
of an elliptic point in Riemannian immersions. The following result follows
from A. G. Colares and H. F. de Lima [13], which is the semi-Riemannian
version of Lemma 5.4 of L. J. Aĺıas, A. Brasil Jr and A. G. Colares [1].

Lemma 3.3 (Lemma 5.3 of [13]). Let M
n+1

= εI×fM
n be a semi-Riemannian

warped product manifold and ψ : Σn → M
n+1

a Riemannian immersion. If
−εf(h) attains a local minimum at some p ∈ Σn such that f ′(h)(p) 6= 0, then
p is an elliptic point for Σn.

Moreover, we also need some properties on operator Lr. Notice that F.
Camargo, A. Camimha and H. F. de Lima [12] proved the following lemma.
In the Lorentzian setting, the following result is just a particular case of the
one obtained by A. J. Aĺıas and A. G. Colares in Lemma 4.1 of [2].
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Lemma 3.4 (Lemma 2.2 of [12]). Let ψ : Σn → εI ×f M
n be a Riemannian

immersion in a semi-Riemannian warped product manifold. If h = (πI)|Σn :
Σn → I is the height function of Σn, then

Lr(h) = (ln f)′(εtrPr − 〈Pr∇h,∇h〉) + 〈N, ∂t〉tr(APr). (14)

Using equations (6.2) and (6.16) of [2], H. F. de Lima and H. R. de Lima
[14] obtained the following result.

Lemma 3.5 (Lemma 3.4 of [14]). Let ψ : Σn → εI ×f M
n be a Riemannian

immersion in a semi-Riemannian warped product manifold. If h = (πI)|Σn :
Σn → I is the height function of Σn, then

〈divΣnP1,∇h〉
=− ε

(
RicMn(N∗, N∗) + ε(n− 1)(ln f)′′(h)|∇h|2

)
〈N, ∂t〉,

(15)

where RicMn denotes the Ricci curvature tensor of the fiber Mn and N∗ =
N − ε〈N, ∂t〉∂t is the projection of the unit normal vector field N of Σn onto
Mn. Moreover, if the fiber Mn has constant sectional curvature k, then

〈divΣnPr,∇h〉 = −ε(n− r)
( k

f2(h)
+ ε(ln f)′′(h)

)
〈Pr−1∇h,∇h〉〈N, ∂t〉. (16)

In view of Lemma 3.4 and Lemma 3.5, and making use of equation (6), we
obtain the following key lemma.

Lemma 3.6. Let ψ : Σn → εI ×f M
n be a spacelike hypersurface in a semi-

Riemannian warped product manifold whose fiber Mn has constant sectional
curvature k. Denoted by h = (πI)|Σn : Σn → I the height function of Σn, if

σ(t) =

∫ t

t0

f(s)ds, (17)

then we obtain

divΣn(Pr(∇σ(h)))

=εbr
(
f ′(h)Hr + f(h)Hr+1〈N, ∂t〉

)
− ε(n− r)f(h)

( k

f2(h)
+ ε(ln f)′′(h)

)
〈Pr−1∇h,∇h〉〈N, ∂t〉.

(18)

Proof. It follows from relation (6) that

Lr(σ(h)) = f(h)Lr(h) + f ′(h)〈Pr(∇h),∇h〉. (19)
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Applying Lemma 2.1 and Lemma 3.4 on relation (19) implies that

Lr(σ(h)) =f(h)
(
(ln f)′(εbrHr − 〈Pr∇h,∇h〉) + ε〈N, ∂t〉brHr+1

)
+ f ′(h)〈Pr(∇h),∇h〉

=εbr(f ′(h)Hr + f(h)Hr+1〈N, ∂t〉).
(20)

Replacing f(h) by σ(h) in (12), we have

divΣ(Pr(∇σ(h))) = f(h)〈divPr,∇h〉+ Lr(σ(h)). (21)

Thus, our proof follows from Lemma 3.5, (20) and (21).

4 Warped products of constant sectional curvature

According to [7, 20, 21], we may say that a spacelike hypersurface ψ : Σn →
εI ×f M

n is bounded away from the future infinity of εI ×f M
n if there exists

t ∈ I such that
ψ(Σn) ⊂ {(t, p) ∈ εI ×f M

n : t ≤ t}.

Analogously, a spacelike hypersurface ψ : Σn → εI×fM
n is said to be bounded

away from the past infinity of εI ×f M
n if there exists t ∈ I such that

ψ(Σn) ⊂ {(t, p) ∈ εI ×f M
n : t ≥ t}.

Finally, Σn is said to be bounded away from the infinity of εI ×f M
n if it is

both bounded away from the past and future infinity of εI ×f M
n.

Lemma 4.1 (Corollary 1 of [11]). Let M
n+1

has constant sectional curvature,

and ψ : Σn → M
n+1

be a complete Riemannian immersion with bounded
second fundamental form. Let g : Σn → R be a smooth function such that
|∇g| ∈ L(Σn). If Lrg does not change sign on Σn, then Lrg = 0 on Σn.

Now, we give our main uniqueness theorems for spacelike hypersurfaces
immersed in Lorentzian warped product. Assuming that N is the orientation
of the spacelike hypersurface ψ : Σn → −I ×f M

n and its angle function
satisfies 〈N, ∂t〉 < 0, then, by applying the reverse Cauchy-Schwarz inequality,
we obtain

〈N, ∂t〉 ≤ −1 < 0. (22)

Proof of Theorem 1.1. Letting ε = −1, then it follows from (20) that

Lr(σ(h)) = −br(f ′(h)Hr + f(h)Hr+1〈N, ∂t〉). (23)
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Noting that both Hr and Hr+1 are positive, then, making use of the as-
sumption (1) and (22) in (23) we obtain

Lr(σ(h)) = −brHrf(h)

(
f ′

f
(h) +

Hr+1

Hr
〈N, ∂t〉

)
≥ −brHrf(h)

(
f ′

f
(h)− Hr+1

Hr

)
≥ 0.

(24)

On the other hand, since the spacelike hypersurface Σn is bounded away
from the infinity of −I ×f M

n, then the height function h is also bounded on
Σn. Also, we have

|∇σ(h)| = f(h)|∇h|, (25)

this means that |∇σ(h)| is integrable since that |∇h| is integrable on Σn.
The above arguments guarantees that Lemma 4.1 is applicable, then applying
Lemma 4.1 on the smooth function σ(h) on Σn we have

Lr(σ(h)) = 0. (26)

Putting the above equation into (32) and noting that br is positive, then
we obtain f ′(h)Hr + f(h)Hr+1〈N, ∂t〉 = 0, thus, making use of inequality (1)
in this equation gives that

f ′

f
= −〈N, ∂t〉

Hr+1

Hr
≥ −〈N, ∂t〉

f ′

f
> 0. (27)

Notice that hypothesis (1) guarantees that f ′

f > 0 on I, then it follows

from the above inequality that −〈N, ∂t〉 ≤ 1, comparing this inequality with
inequality (22) we obtain equation 〈N, ∂t〉 = −1. Finally, using ε = −1 and
〈N, ∂t〉 = −1 in relation (10) gives that

|∇h|2 = −
(
1− 〈N, ∂t〉2

)
≡ 0. (28)

Thus, we prove that Σn is a slice of M
n+1

. �

Remark 4.1. Theorem 5.4 of [13] attains the same conclusion as our Theorem
1.1, however, in our hypotheses we do not need the condition that the warping
function f has convex logarithm.

Next we consider the steady state-type spacetime, i.e., the Lorentzian
warped product −R ×et M

n, where the fiber Mn is an n-dimensional com-
plete and connected Riemannian manifold. The importance of considering
Hn+1 = −R×et Rn comes from the fact that, in cosmology, H4 is the steady
model of the universe proposed by H. Bondi and T. Gold [9], and F. Holy [15].
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Moreover, following [12] we see that in physical context the steady state space
appears naturally as an exact solution for the Einstein equations, being a cos-
mological model where matter is supposed to travel along geodesic normal to
horizontal hyperplanes. We refer the reader to [?] for an alternative descrip-
tion of the steady state space Hn+1. Consider a steady state-type spacetime
−R×etM

n of constant sectional curvature, then from (7) we see that the fiber
Mn of −R×et M

n is of constant sectional zero. Thus, the following result is
true.

Corollary 4.1 (Theorem 3.6 of [12]). Let M
n+1

= −R ×et M
n be a steady

state-type spacetime whose fiber is of constant sectional curvature zero. Let ψ :

Σn →M
n+1

be a complete and connected spacelike hypersurface with bounded

second fundamental form and bounded away from the infinity of M
n+1

. Sup-
pose that the r-th mean curvatures satisfy 0 < Hr ≤ Hr+1 for some 1 ≤ r ≤
n− 1. If |∇h| ∈ L(Σn) on Σn, then Σn is a slice of M

n+1
.

Now, we give the uniqueness theorems (which is Riemannian version of
Theorem 1.1) for spacelike hypersurfaces immersed in Riemannian warped
product. Assuming that N is the orientation of the spacelike hypersurface
ψ : Σn → I ×f M

n and its angle function satisfies 〈N, ∂t〉 < 0, then, by
applying the Cauchy-Schwarz inequality, we obtain

−1 ≤ 〈N, ∂t〉 < 0. (29)

Theorem 4.1. Let M
n+1

= I×fM
n be a Riemannian warped product of con-

stant sectional curvature. Let ψ : Σn → M
n+1

be a complete and connected
spacelike hypersurface with bounded second fundamental form and bounded

away from the infinity of M
n+1

. Suppose that Hr and Hr+1 are positive for
some 1 ≤ r ≤ n− 1 such that

Hr+1

Hr
≤ f ′

f
(h). (30)

If h has local maximum on Σn and |∇h| ∈ L(Σn), then Σn is a slice of M
n+1

.

Proof. Letting ε = 1, then it follows from (20) that

Lr(σ(h)) = br(f ′(h)Hr + f(h)Hr+1〈N, ∂t〉). (31)

Noting that bothHr andHr+1 are positive, then, making use of assumption
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(29) and (30) in (31) we obtain

Lr(σ(h)) = brHrf(h)

(
f ′

f
(h) +

Hr+1

Hr
〈N, ∂t〉

)
≥ brHrf(h)

(
f ′

f
(h)− Hr+1

Hr

)
≥ 0.

(32)

On the other hand, since the spacelike hypersurface Σn is bounded away
from the infinity of I ×f M

n, then the height function h is also bounded on
Σn. Also, we have |∇σ(h)| = f(h)|∇h|, this means that |∇σ(h)| is integrable
since that |∇h| is integrable on Σn. The above arguments implies that Lemma
4.1 is applicable, then applying Lemma 4.1 on the smooth function σ(h) on
Σn we have

Lr(σ(h)) = 0. (33)

Putting the above equation into (32) and noting that br is positive, then
we obtain f ′(h)Hr +f(h)Hr+1〈N, ∂t〉 = 0, thus, making use of inequality (30)
in this equation gives that

0 <
f ′

f
= −〈N, ∂t〉

Hr+1

Hr
≤ −〈N, ∂t〉

f ′

f
. (34)

Notice that hypothesis (30) guarantees that f ′

f > 0 on I, then it follows

from the above inequality that −〈N, ∂t〉 ≥ 1, comparing this inequality with
inequality (29) we obtain equation 〈N, ∂t〉 = −1. Finally, making use of ε = 1
and 〈N, ∂t〉 = −1 in (10) gives that

|∇h|2 = 1− 〈N, ∂t〉2 ≡ 0. (35)

Thus, we prove that Σn is a slice of M
n+1

.

The hyperbolic-type space is defined by R ×et M
n, where Mn is a com-

plete connected Riemannian manifold. The motivation for investigating the
hyperbolic-type space R ×et Mn comes from the fact that, the
(n + 1)-dimensional hyperbolic space Hn+1 is isometric to R ×et Rn. Noting
that an explicit isometry between the half-space model and this hyperbolic-
type model has been pointed out by L. J. Aĺıas and M. Dajczer in [3].

Now letting the warping function be f = et for t ∈ R, then the following
result follows from Theorem 4.1 and Lemma 5.2.

Corollary 4.2 (Theorem 3.7 of [12]). Let M
n+1

= I ×et M
n be a hyperbolic-

type space whose fiber is of constant sectional curvature zero. Let ψ : Σn →
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M
n+1

be a complete and connected spacelike hypersurface with bounded second

fundamental form and bounded away from the infinity of M
n+1

. Suppose that
the r-th mean curvatures satisfy 0 < Hr+1 ≤ Hr for some 1 ≤ r ≤ n − 1. If

|∇h| ∈ L(Σn) on Σn, then Σn is a slice of M
n+1

.

Remark 4.2. We refer the reader to S. Montiel [18] and B. O’Neill [19] for
some examples of semi-Riemannian warped products whose warping functions
are not necessarily to have convex logarithm. Without requiring the condition
that the warping function f has convex logarithm, Theorem 4.1 attains the
same conclusion as Theorem 5.8 of [13]. That is, our Theorem 4.1 is an
extension of Theorem 5.8 of [13].

5 Semi-Riemannian warped products

In this section, in order to prove our main theorems, we shall make use of
the following lemma obtained by A. Caminha [10]. Notice that the following
lemma extends a result of S. T. Yau [22] on a version of Stokes theorem for
an n-dimensional complete and noncompact Riemannian manifold.

Lemma 5.1 (Proposition 2.1 of [10]). Let X be a smooth vector field on the n-
dimensional complete, noncompact, oriented Riemannian manifold Mn, such
that divMnX does not change sign on Mn. If |X| ∈ L(Mn), then divMn = 0.

By using Proposition 42 of [19] proved by B. O’Neill, we obtained the
following result. Here we omit the proof of Lemma 5.2 since that it is similar
to that of Corollary 2.4 of [16] proved by T. H. Kang.

Lemma 5.2. Let M
n+1

= εI ×f M
n be a semi-Riemannian warped product

whose fiber is of constant sectional curvature k. Then, M
n+1

is of constant
sectional curvature if and only if the warping function satisfies

εff ′′ − εf ′2 + k = 0.

Proof of Theorem 1.2. We assume that N is the orientation of the spacelike
hypersurface ψ : Σn → −I ×f M

n and its angle function satisfies 〈N, ∂t〉 < 0,
then inequality (22) folds. Letting ε = −1, then it follows from relation (18)
that

divΣn(Pr(∇σ(h)))

=− brf(h)Hr

(
f ′(h)

f(h)
+
Hr+1

Hr
〈N, ∂t〉

)
+ (n− r)f(h)

k − (ff ′′(h)− f ′2(h))

f2(h)
〈Pr−1∇h,∇h〉〈N, ∂t〉.

(36)
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Next we claim that under the assumption of Theorem 1.2, the Newton
transformation Pr is positive definite for some 1 ≤ r ≤ n − 1. In fact, first,
if H2 > 0 then by applying Lemma 3.1 we know P1 is positive. Otherwise,
noticing the assumption (1) that f ′(h) does not vanish on Σn, then applying
Lemma 3.3 we see that there exists an elliptic point p0 ∈ Σn. Since both Hr

and Hr+1 are positive, applying Lemma 3.2 we know that Lr is elliptic or,
equivalently, Pr is positive definite.

From (1) and (2) we see that Hr+1

Hr
〈N, ∂t〉 ≤ − f ′(h)

f(h) , this means that the

first term of the right hand side of (36) is nonnegative. Together with the
assumption (1), (2), the fact that f is always positive on Σn and Pr is positive
definite on Σn, thus, it follows from (36) that

divΣn(Pr(∇σ(h))) ≥ 0. (37)

On the other hand, since Σn is bounded away from the infinity of Mn+1

and the eigenvalues are continuous functions on Σn, and noting that the shape
operator A is bounded on Σn, then it follows from (4) that |Pr| is bounded
on Σn. That is, there exists a positive constant C > 0 such that |Pr| ≤ C on
Σn, which means that |Pr(∇h)| ≤ |Pr||∇h| ≤ C|∇h|. As |∇h| ∈ L(Σn) then
we obtain

|Pr(∇h)| ∈ L(Σn). (38)

Furthermore, taking into account (37) and (38) and applying Lemma 5.1
to vector field X = Pr(∇(σ(h))) we get that divΣn(Pr(∇σ(h))) = 0. Noticing
that both the two terms on the right hand side of (36) are nonnegative in this
case, then both the two terms are zero. Consequently, in view of (22) and (1),
it follows from (36) that 〈Pr−1∇h,∇h〉 = 0. In fact, if there exists p ∈ Σn

such that |∇h|(p) > 0, by using divΣn(Pr(∇σ(h))) = 0 and the second term of
the right hand side of (36) is nonnegative, it follows from the above arguments
that k−(ff ′′(h)−f ′2(h)) = 0. Applying Lemma 5.2 we know that in this case

M
n+1

is of constant sectional curvature, then the proof follows from Theorem
1.1. If not, since that Pr−1 is positive definite on Σn for some 2 ≤ r ≤ n, then
the above analyses imply that

∇h ≡ 0, (39)

i.e., h is a constant on Σn. Thus, we prove that Σn is a slice of −I ×f M
n. �

Before giving the Riemannian version of above theorem concerning space-
like hypersurface in Riemannian warped product manifold, we present the
following remark.

Remark 5.1. Noticing that 〈N, ∂t〉 ≤ −1 and Pr−1 is positive definite, then
the assumption (1) of [14] does not assures that equation (23) in [14] is non-
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negative. Only if we correct the equation (1) in [14] as follows:

k ≤ inf
I

(ff ′′ − f ′2),

the proof of Theorem 1.1 of [14] can continue and in this case the conclusion
of this theorem still holds. However, the proof need the assumption that ln f
is a convex function, i.e., (ln f)′′ ≥ 0 on Σn.

Theorem 5.1. Let M
n+1

= I×f M
n be a Riemannian warped product whose

Riemannian fiber Mn has constant sectional curvature k satisfying

k ≥ sup
I

(f ′2 − ff ′′). (40)

Let ψ : Σn →M
n+1

be a complete noncompact and connected spacelike hyper-
surface with bounded second fundamental form and bounded away from the in-

finity of M
n+1

. Suppose that Hr and Hr+1 are positive for some 1 ≤ r ≤ n−1
and satisfy (30). If h has local maximum on Σn and |∇h| ∈ L(Σn), then Σn

is a slice.

Proof. Assuming that N is the orientation of the spacelike hypersurface ψ :
Σn → I ×f M

n and its angle function satisfies 〈N, ∂t〉 < 0, then (29) holds.
In Riemannian case letting ε = 1, then it follows from (18) that

divΣn(Pr(∇σ(h)))

=brf(h)Hr

(
f ′(h)

f(h)
+
Hr+1

Hr
〈N, ∂t〉

)
− (n− r)f(h)

k − (f ′2(h)− ff ′′(h))

f2(h)
〈Pr−1∇h,∇h〉〈N, ∂t〉.

(41)

Since both Hr−1 and Hr are positive, then (29) implies that f ′(h) is always
positive on Σn. As discussed in proof of Theorem 1.2, applying Lemma 3.1,
3.2 and 3.3 we see that the Newton transformation Pr is positive definite under
the assumptions of Theorem 5.1. Moreover, from (29) and (30) it is easy to

see Hr+1

Hr
〈N, ∂t〉 ≥ − f ′(h)

f(h) , this means that the first term of the right hand side

of (41) is nonnegative. Together with the assumption (29) and (30), and the
fact that f is always positive on Σn and Pr is positive definite on Σn, then we
see from (41) that (37) still holds.

On the other hand, notice that the shape operator A is bounded on Σn,
then it follows from (4) that |Pr| is bounded on Σn, i.e., there exists a positive
constant C > 0 such that |Pr| ≤ C on Σn, which means that |Pr(∇h)| ≤
|Pr||∇h| ≤ C|∇h| ∈ L(Σn).
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Moreover, taking into account inequality (37) and the fact that |Pr(∇h)| ∈
L(Σn), applying Lemma 5.1 to vector field X = Pr(∇(σ(h))) we conclude that
divΣn(Pr(∇σ(h))) = 0. Notice that both two terms on the right hand side
of (41) are nonnegative, then both the two terms are zero. Consequently, it
follows from (29) and (30) that 〈Pr−1∇h,∇h〉 = 0. Since that Pr−1 is positive
definite on Σn for some 2 ≤ r ≤ n, then from the above arguments and the
proof of Theorem 1.2 we have that

∇h ≡ 0,

i.e., h is a constant. This means that Σn is a slice of I ×f M
n.

As discussed in Remark 4.2, the condition ln f being convex plays an im-
portant role in proof of Theorem 1.2 of [14]. Our Theorem 5.1 extends the
conclusion of Theorem 1.2 of [14] without requiring this condition. Also, we
refer the reader to [5] for an another use of this condition.

Lemma 5.3. Let ψ : Σn → εI ×f M
n be a spacelike hypersurface in a semi-

Riemannian warped product manifold. Denoted by h = (πI)|Σn : Σn → I the

height function of Σn, if σ(t) =
∫ t

t0
f(s)ds, then

divΣn(Pr(∇σ(h)))

=− εf(h)
(
RicMn(N∗, N∗) + ε(n− 1)(ff ′′ − f ′2)〈N∗, N∗〉Mn

)
〈N, ∂t〉

+ εbr (f ′(h)Hr + f(h)Hr+1〈N, ∂t〉) .
(42)

Proof. Noticing that N∗ = N − ε〈N, ∂t〉∂t, then it follows from (9) that

〈N∗, N∗〉Mn =
1

f2(h)
|∇h|2. (43)

Thus, putting (15), (20) and (43) into relation (21) proves (42).

Theorem 5.2. Let M
n+1

= −I×f M
n be a Lorentzian warped product whose

Riemannian fiber Mn has Ricci curvature Ric satisfying

RicMn ≥ (n− 1) sup
I

(ff ′′ − f ′2)〈 , 〉Mn . (44)

Let ψ : Σn →M
n+1

be a complete noncompact and connected spacelike hyper-
surface with bounded second fundamental form and bounded away from the in-

finity of M
n+1

. Suppose that Hr and Hr+1 are positive for some 1 ≤ r ≤ n−1
and satisfy inequality (1). If h has local minimum on Σn and |∇h| ∈ L(Σn),
then Σn is a slice.
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Proof. In this context, letting ε = −1 and hence inequality (44) assures that
the first term of the right hand side of (42) is nonnegative. Moreover, in-
equality (1) assures that the second term of the right hand side of (42) is
nonnegative. Thus, the proof follows from Theorem 1.1.

Theorem 5.3. Let M
n+1

= I×f M
n be a Riemannian warped product whose

Riemannian fiber Mn has Ricci curvature Ric satisfying

RicMn ≥ (n− 1) sup
I

(f ′2 − ff ′′)〈 , 〉Mn . (45)

Let ψ : Σn →M
n+1

be a complete noncompact and connected spacelike hyper-
surface with bounded second fundamental form and bounded away from the in-

finity of M
n+1

. Suppose that Hr and Hr+1 are positive for some 1 ≤ r ≤ n−1
and satisfy inequality (30). If h has local maximum on Σn and |∇h| ∈ L(Σn),

then Σn is a slice of M
n+1

.

Proof. In this case, letting ε = 1 and hence inequality (45) assures that the
first term of the right hand side of (42) is nonnegative. Thus, the proof follows
from Theorem 5.1.
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[4] L. J. Aĺıas, D. Impera, M. Rigoli, Hypersurfaces of constant higher order
mean curvature in warped profuct spaces, Trans. Amer. Math. Soc., 365
(2013), 591–621.



Complete spacelike hypersurfaces with positive r-th mean curvature 276
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