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Tripotents: a class of strongly clean elements in
rings

Grigore Călugăreanu

Abstract

Periodic elements in a ring generate special classes of strongly clean
elements. In particular, elements b such that b = b3, which are called
tripotents and include idempotents, negative of idempotents and order 2
units, are strongly clean. Such elements are determined in 2× 2 matrix
rings over commutative domains or over arbitrary division rings and for
rings of integers modulo n.

1 Introduction

An element t was called nilpotent in a ring R if tn = 0 for a positive integer n.
Among nilpotent elements, the particular case n = 2 (i.e. zerosquare elements)
play a special rôle. Idempotents are also related to n = 2 so a natural idea
is to consider elements b ∈ R with b = bn for a positive integer n ≥ 3. But
these can be included in a larger subset of the ring: the periodic elements,
introduced by H. Bell and studied merely for semigroups by several authors.

An element a in a unital ring R was called clean if there is an idempotent
e and a unit u such that a = e+ u, and strongly clean if eu = ue.

We show that periodic elements generate strongly clean elements and in
particular, elements b ∈ R with b = bn for a positive integer n are strongly
clean when n is odd. The simplest special case are the elements called tripo-
tents, that is b = b3.
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It is readily seen that idempotents and negatives of idempotents are tripo-
tents and among units only the order 2 units (also called square roots of 1)
are tripotents. Thus, we call a tripotent genuine if it is not an idempotent or
a negative of idempotent or an order 2 unit.

We show that 2 × 2 matrix rings over commutative (integral) domains or
over arbitrary division rings do not possess genuine tripotents.

Idempotents, nilpotents and units are well-known in any ring Zn for any
positive integer n ≥ 2. We completely determine the order 2 units and the
genuine tripotents for these rings.

We denote by Per(R) the set of all the periodic elements, Id(R) the idem-
potents and U(R) the units of a unital ring R. Clearly, Id(R) ⊂ Per(R),
Per(R) ∩N(R) = 0 and Per(R) ∩ U(R) = {u ∈ U(R)|um = 1}.

In mostly all cases we use the simple notation a for an integer modulo n.
However when necessary, we also use the notation [a]n.

2 General results

Recall that an element a in a ring R was called periodic if ak = ak+m for some
positive integers k,m. Obviously tripotents are periodic.

The following result will be important.

Proposition 1. Suppose a is a periodic element in a ring and ak = ak+m. If
m is even then ak is strongly clean and if m is odd, −ak is strongly clean.

Proof. It is well-known (see [1]) that for every periodic element there is a
power which is an idempotent. Since we need the details in our proof, suppose
k = qm + r is the division with quotient q and reminder 0 ≤ r < m (with
possible q = 0 if m ≥ k). Observe that ak = ak+m = ak+2m = ... = ak+(q+1)m

and (q + 1)m > k. We just have to multiply ak = ak+(q+1)m with a(q+1)m−k

and obtain the idempotent a(q+1)m. In particular, if m ≥ k (and so q = 0),
am is the required idempotent.

Together with a(q+1)m, 1−a(q+1)m is also (the complementary) idempotent
and it is orthogonal to ak (because ak = ak+(q+1)m).

Next we show that a(q+1)m = akm if r 6= 0. We first rewrite ak = ak+m as
aqm+r = a(q+1)m+r and multiply this with am−r. Then a(q+1)m = a(q+2)m =
..., so our claim reduces to k = qm+ r ≥ q + 1 since both m, r ≥ 1.

If r = 0, that is, m divides k then ak = aqm = a(q+1)m is already idempo-
tent.

Finally, consider [(1−a(q+1)m)−ak]m. Since the two terms are orthogonal
and the left one (the parenthesis) is idempotent, this gives (1−a(q+1)m)+akm

if m is even and by the claim above, = 1. Thus (1 − a(q+1)m) − ak is a unit
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and so ak is strongly clean. If m is odd we consider [(1− a(q+1)m) + ak]m and
similarly we obtain the conclusion −ak is strongly clean.

Remark. As seen above, for a periodic element a with ak = ak+m, a(q+1)m

is an idempotent. However, if r = 0 (recall that k = qm + r), this is not the
smallest power of a which is idempotent: ak is also idempotent.

An important special case, which will be studied in the sequel are the
periodic elements b ∈ R with k = 1. An element b = bn is called n-idempotent
(also called potent element in [2]). More specific, for n = 3, such an element
is called a tripotent. We denote by nId(R) and 3Id(R) the corresponding sets
of elements. Idempotents (i.e. 2-idempotents) are clearly also n-idempotents
for any n ≥ 3. Notice that if b is a tripotent, so is the negative −b and that
3Id(R) ∩ U(R) = {u ∈ U(R)|u2 = 1} := U2(R), that is, 1 and order 2 units
(also called the 2-torsion subgoup of U(R)). A tripotent will be called genuine
if it is not idempotent (so 6= 0, 1), not the negative of an idempotent nor an
order 2 unit.

If e is a nontrivial idempotent then the negative −e is a tripotent which is
not idempotent nor order 2 unit. However, the converse fails: 4 is a genuine
tripotent in Z30 which is not the negative of an idempotent.

Since nontrivial n-idempotents are zero divisors, integral domains and di-
vision rings have only trivial n-idempotents.

In particular for tripotents, since b = b3 is equivalent to (b−1)b(b+1) = 0,
in any integral domain the only tripotents are {−1, 0, 1}.

By Proposition 1, for odd n, n-idempotents are strongly clean and for even
n, negative of n-idempotents are strongly clean. This distinction is natural
since the negative of a nonzero idempotent is not idempotent. In particular,
tripotents are strongly clean.

From the proof of Proposition 1, we record:

Corollary 2. If b ∈ R is a tripotent then
(i) b2 and 1− b2 are both idempotents; the converse fails (2 is not tripotent

in Z12);
(ii) b and 1− b2 are orthogonal;
(iii) 1− b− b2 is an order 2 unit;
(iv) If b is not idempotent then 1 + b− b2 is an order 2 unit.
(v) If b ∈ R is a tripotent then Rb⊕R(1− b2) = R is the Pierce decompo-

sition into left (principal) ideals. A symmetric decomposition into right ideals
also holds.

(vi) Id(R) = 3Id(R) holds for a ring R iff U2(R) = {1}.
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For commutative rings recall (129.1 [6]) that for every group G, there is
a (commutative unital) ring whose unit group is isomorphic to Z2 ×G. This
shows that rings with tripotents which are not idempotents abound. However
unit groups without order 2 elements are in this sense exceptional. Indeed (see
129.4 [6]): the unit group U(R) of a (commutative unital) ring has trivial 2-
component iff R is a subdirect sum of domains of characteristic 2.

Example. In M2(Z), the matrices

[
2 n
0 1

]
=

[
1 n
0 0

]
+I2 are strongly

clean but not tripotent. However, if char(R) = 3 then any strongly clean
element whose unit has order 2, is a tripotent.

Indeed, (e+ u)3 = e3 + u3 + 3eu+ 3e = e+ u.

Remarks. If all tripotents are central in a ring R then the ring is Abelian
and order 2 unit-central, but this is not necessarily. The free ring Z 〈x, y〉 is
an example of noncommutative unit-central ring with only trivial idempotents
(so Abelian).

Notice that if 2 ∈ U(R) then tripotent-central is equivalent to Abelian
(idempotent-central). This follows from a simple representation of tripotent
as difference of two idempotents (see [3]), namely: if b = b3 then b = 2−1(b2 +
b)− 2−1(b2 − b).

If all elements are tripotents (rings which satisfy the identity x3 = x were
investigated by Hirano and Tominaga - see [7]), the ring may not be Boolean
(e.g. F3).

It is easy to see that 0 is the only tripotent in the Jacobson radical, 1 and
order 2 units are the only (nonzero) tripotents in any local ring and, in any
ring with only trivial idempotents, the only nontrivial tripotents (i.e. 6= 0, 1)
are order 2 units.

There is a large bibliography on strongly clean matrices the last 10 years
(see [5] for a comprehensive survey).

Even for integral 2 × 2 matrices, a complete characterization for strongly
clean elements is not available yet (but see [4], for extensive results).

It is far more easy to determine the 2× 2 tripotents even over any commu-
tative domain.

Proposition 3. Let D be a commutative (integral) domain. The matrix ring
M2(D) has no genuine tripotents.

Proof. Since B3 = B implies detB(1 − det2B) = 0, tripotents have detB ∈
{0,±1}.

If detB = ±1, B is a unit, so it must be an order 2 unit.
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If detB = 0, Cayley-Hamilton gives B2 − Tr(B)B = 02. Since also B =
B3 = Tr(B)B2 = Tr2(B)B, we get B = 02 or Tr2(B) = 1. Hence B2 = B,
that is B is idempotent or B2 = −B which are negatives of idempotents.

Remarks. 1) By computation, the tripotent 2 × 2 matrices over a com-
mutative domain are:

I2, −I2;

[
a b
c −a

]
with a2 + bc = 1 and 02,

[
a+ 1 b
c −a

]
with a2 +a+

bc = 0, and

[
a− 1 b
c −a

]
with a2 − a+ bc = 0.

2) The result fails if the domain hypothesis is dropped: in M2(Z24), 3I2 is
a genuine tripotent. Actually, if b is any genuine tripotent in a ring R, bIn is
a genuine tripotent in Mn(R).

If the commutativity hypothesis is dropped but D is a division ring, we
can prove the following

Proposition 4. Let D be any division ring. The matrix ring M2(D) has no
genuine tripotents.

Proof. Since 02 is an idempotent, we start with A =

[
a b
c d

]
6= 02, matrix

with at least one nonzero entry.
We first show that we can always suppose that the (1,1)-entry a 6= 0.
First observe that if X and Y are similar matrices and X is a tripotent

then so is Y (indeed, X3 = X ⇐⇒ (UXU−1)3 = UXU−1). Now, if d 6= 0, for

U =

[
0 1
1 0

]
= U−1 we obtain

[
0 1
1 0

] [
a b
c d

] [
0 1
1 0

]
=

[
d c
b a

]
,

which has nonzero (1,1)-entry. Therefore, if b 6= 0 we may suppose a = d = 0.

Now for V =

[
1 0
1 1

]
we get V

[
0 b
c 0

]
V −1 =

[
−b b
c− b b

]
which has

nonzero (1,1)-entry. The c 6= 0 is similar because a matrix is a tripotent iff its
transpose is a tripotent.

Next, for the above matrix A, suppose a 6= 0. If U =

[
1 0

−ca−1 1

]
then

UA = B =

[
a b
0 d− ca−1b

]
.

(i) If d−ca−1b 6= 0 then B is invertible, and so is A (because U is invertible).
Hence it is an order 2 unit.

(ii) If d − ca−1b = 0 then B =

[
a b
0 0

]
. Since A = U−1B, if A is

a tripotent, (U−1B)3 = U−1B and so (BU−1)3 = BU−1, that is BU−1 =[
a b
0 0

] [
1 0

ca−1 1

]
=

[
a+ bca−1 b

0 0

]
is tripotent.
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Further, notice that

[
x y
0 0

]3
=

[
x3 x2y
0 0

]
=

[
x y
0 0

]
is equivalent

to x3 = x and x2y = y, and if the matrix is not zero then x 6= 0 (indeed, x = 0
implies y = 0). Thus x2 = 1 and so x ∈ {±1}, with arbitrary y.

Since BU−1 6= 02 (otherwise B = 02 and A = 02) is a tripotent, BU−1 =[
±1 b
0 0

]
is idempotent if the (1,1)-entry is +1 or is a negative of idempotent

if the (1,1)-entry is −1. Then so is U−1B = A, and the proof is complete.

Remark. The property fails for n×n matrices with n ≥ 3. Indeed, for any

unital ring R, in M3(R) the matrix B =

 0 1 0
1 0 0
0 0 0

 is a genuine tripotent

and the example can be obviously generalized for any n ≥ 3. Actually, the
left-upper 2× 2 corner may be replaced by any order 2 unit.

Finally a useful observation.

Proposition 5. Let R = R1 × ...×Rk be a finite direct product of rings and
a = (a1, ..., ak) ∈ R. The element a is a tripotent, or idempotent, or order 2
unit, or negative of idempotent iff so are all ai, 1 ≤ i ≤ k, respectively.

Just to simplify the wording in the sequel, let us say that elements in a
(finite) subset of a ring are of the same sort if either all are idempotents, or
else all are order 2 units, or all are negative of idempotents (”different sort”,
for denial). Hence

Corollary 6. With above notations, a is a genuine tripotent iff {a1, ..., ak}
are of different sort.

3 The tripotents of Zn

Since local rings are strongly clean and so are direct products, in every Zn, all
elements (including tripotents) are (strongly) clean.

In order to determine all the tripotents, we first single out the order 2
units.

The order 2 units.
It is well-known that u ∈ U(Zn) iff (u;n) = 1 and consequently there are

ϕ(n) - the Euler’s (totient) function - units in Zn.

More precisely, if n = pr11 ...p
rk
k then |U(Zn)| = ϕ(n) = n(1 − 1

p1
)...(1 −

1

pk
) = pr1−11 (p1 − 1)...prk−1k (pk − 1), that is, U(Zn) is a (finite Abelian) group



TRIPOTENTS: A CLASS OF STRONGLY CLEAN ELEMENTS IN RINGS 75

of order ϕ(n)̇. Moreover, U(Zn) is cyclic iff n = 2, 4, any power of an odd
prime or twice any power of an odd prime, is referable to Gauss.

Obviously −1 = n− 1 is always an order 2 unit in Zn and 1 ∈ U2(Zn).

Theorem 7. Let n = pr11 ...p
rk
k . If p1 = 2 and r1 = 1, then U2(Zn) ∼=

Zk−1
2 = Z2 × ... × Z2, k − 1 copies, if p1 = 2 and r1 = 2 or else p1 ≥ 3,

then U2(Zn) ∼= Zk
2 = Z2 × ... × Z2, k copies, and if p1 = 2 and r1 > 2 then

U2(Zn) ∼= Zk+1
2 = Z2 × ...× Z2, k + 1 copies.

Proof. The following is well-known (see [6], chapter XVIII, 128).
For any odd prime p, or p = 2, r ≤ 2, U(Zpr ) ∼= Zpr−pr−1 with |U(Z2)| = 1,

U(Z2r ) ∼= Z2×Z2r−2 for any r > 2 and, for a finite (ring) direct product (sum)
U(R1 × ... × Rk) = U(R1) × ... × U(Rk). In the case we deal with, U(Zn) =
U(Zp

r1
1
×...×Zp

rk
k

) = U(Zp
r1
1

)×...×U(Zp
rk
k

) ∼= Z
p
r1−1
1 (p1−1)

×...×Z
p
rk−1

k (pk−1)
for odd primes or p1 = 2, r1 ≤ 2, and U(Zn) ∼= Z2 × Z2r1−2 × Z

p
r2−1
2 (p2−1)

×
...× Z

p
rk−1

k (pk−1)
if p1 = 2, r1 > 2.

Since pi and pi − 1 are coprime, each Z
p
ri−1

i (pi−1)
∼= Z

p
ri−1

i
× Zpi−1, so

finally
U(Zn) ∼= Z

p
r1−1
1
× ...× Z

p
rk−1

k

× Zp1−1 × ...× Zpk−1

in the first case and

U(Zn) ∼= Z2r1−2 × Z
p
r2−1
2
× ...× Z

p
rk−1

k

× Z2 × Zp2−1 × ...× Zpk−1

in the second case.
Thus, we have already U(Zn) decomposed into cyclic groups which give

pi-components (i ∈ {1, ..., k}), but also q-components with a divisor q of some
pi − 1. Excepting p1 = 2, all the other pi are odd and so pi − 1 is even.

The elements in U2(Zn) form the socle of the 2-component of U(Zn), and
so is a (finite) elementary 2-group (i.e. a finite direct sum of Z2). Since for
pi ≥ 3 each pi−1 is even, it will provide an Z2ti in the decomposition of Zpi−1
and so one Z2 in the decomposition of its socle.

Hence, if p1 = 2 and r1 = 1, then U2(Zn) ∼= Zk−1
2 = Z2 × ... × Z2, k − 1

copies, if p1 = 2 and r1 = 2 or else p1 ≥ 3, then U2(Zn) ∼= Zk
2 = Z2 × ...×Z2,

k copies, and if p1 = 2 and r1 > 2 then U2(Zn) ∼= Zk+1
2 = Z2 × ...× Z2, k + 1

copies.

Using Proposition 5 we can immediately determine the order 2 units

Corollary 8. A unit in Zn is of order 2 iff each p-component has order at
most 2 but at least one component has order 2. For p > 2 in Zpk , −1 is

the only order 2 unit and in Z2k there are 3 order 2 units: −1, 2k−1 − 1 and
2k−1 + 1.
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For the sake of completeness, in what follows we recall some elementary
facts on idempotents and order 2 units.

Lemma 9. Let R be a unital ring. Then
(i) If e ∈ R is an idempotent then 2e − 1 ∈ U2(R). If 4 is not a zero

divisor, the converse holds.
(ii) If 2 is invertible and u ∈ U2(R) then 2−1(u+ 1) is an idempotent.
(iii) Let R be a unital ring with 2 ∈ U(R). The map f : Id(R) −→ U2(R)

given by f(e) = 2e− 1 is bijective.
(iv) The function f(x) = 2x−1 defined on an unspecified ring R is injective

iff 2 is a unit.
(v) Let e′, e be commuting idempotents. Then 2ee′ − e− e′ + 1 is an idem-

potent.
(vi) Let R be a ring with commuting idempotents. Then f(Id(R)) is a

subgroup of U2(R).

Proof. (vi) Since we deal with order two units (i.e. u−1 = u), f(Id(R)) is
obviously closed to inverses. As for products f(e)f(e′) = (2e − 1)(2e′ − 1) =
2(2ee′ − e− e′ + 1)− 1 = f(2ee′ − e− e′ + 1) and we use (i).

Further, in the special case R = Zn we can add

Corollary 10. (i) If n is any odd positive integer, then U2(Zn) = f(Id(R)) =
2Id(R)−1. The number of order 2 units is equal to the number of idempotents,
and this is 2k if n has exactly k (distinct) prime divisors.

(ii) f is injective on Id(Zn) for any n divisible by 4.

(iii) For n = 2sm with odd m and s > 2,
n

2
− 1 is an order 2 unit in Zn

which is not image of idempotent through f .

Proof. (i) Let e, e′ be idempotents in Zn for n = 2sm with odd m and s ≥ 2.
Suppose f(e′) = f(e) that is 2(e′ − e) = 0. Since 0 ≤ e′ − e ≤ n− 1, if e′ 6= e,

this means e′ − e =
n

2
= 2s−1m and so e+ 2s−1m is an idempotent. Hence

(e+ 2s−1m )2 = e+ 2s−1m and so 2e = 1− 2s−1m, a contradiction in a ring
of integers modulo even number. Therefore e′ = e.

(iii) Indeed, (2s−1m−1)2 = 2sm(2s−2m−1) + 1 ≡ 1 (modn) and 2s−1m−
1 = f(2s−2m), with nilpotent 2s−2m.

With this at hand we can prove the following

Proposition 11. For every even n, the order 2 units are obtained as images
of idempotents through f with only one exception: if 8 divides n. In this
case f(Id(Zn) is an index 2 subgroup of U2(Zn) and U2(Zn) − f(Id(Zn) =
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n

2
− 1·f(Id(Zn), that is, the order 2 units which are not images of idempotents

form a coset modulo
n

2
− 1.

Proof. Suppose n = 2spr22 ...p
rk
k for odd primes pi (i ∈ {2, ..., k}). Again from

Theorem 7, we already know that U2(Zn) ∼= Zk+1
2 if s > 2, U2(Zn) ∼= Zk

2 if
s = 2 and U2(Zn) ∼= Zk−1

2 is s = 1. Since the number of idempotents is 2k

in all cases, the order 2 units are obtained from idempotents using the map f
given above, bijective in the second case and just surjective in the third.

So order 2 units are always obtained from idempotents through f , except-
ing the case s > 2. In this case f provides only half of the order 2 units
(by Lemma 10, |f(Id(Zn))| = 2k) and, according to Lemma 9, this subset is

an index 2 subgroup of U2(Zn). By Lemma 9 (iii)
n

2
− 1 is an order 2 unit

which is not in f(Id(Zn)), so the remaining order 2 units are in the coset
n

2
− 1 · f(Id(Zn).

Examples. 1) Id(Z30) = {0, 1, 6, 10, 15, 16, 21, 25}. These are mapped
onto U2(Z30) = {1, 11, 19, 29}: f(0) = f(15) = 29, f(1) = f(16) = 1, f(6) =
f(21) = 11 and f(10) = f(25) = 19.

2) For n = 24, the idempotents are Id(Z24) = {0, 1, 9, 16}. These are
mapped by f into {23, 1, 17, 7} but there are another four order 2 units, namely
{5, 11, 13, 19}. As noticed in Lemma 9, since 7 ·17 = 23, 7 ·23 = 17, 17 ·23 = 7,
{1, 7, 17, 23} is an index 2 subgroup of U2(Z24) and {5, 11, 13, 19} are not
images of idempotents through f . However this is a coset 11 · f(Id(Z24)) =

11 · {1, 7, 17, 23} = {5, 11, 13, 19} (
n

2
− 1 = 11 in Lemma 9 (iii)).

The genuine tripotents.
As observed in Corollary 6, [x]n is a genuine tripotent iff all [x]pr1

1
, ...,[x]prk

k

are (tripotents but) of different sort.
First we prove the following

Proposition 12. If n = psqr with different odd primes p, q and s, r ≥ 0 then
Zn has no genuine tripotents.

Proof. Suppose [x]n is a tripotent in Zn. Then [x]ps = x is a tripotent in Zps

and [x]qr = x̂ is a tripotent in Zqr . As already noticed, these can be only 0, 1

or −1. Excepting (0, 0̂), (1, 1̂) and (−1,−1̂) which are clearly of the same sort,
we have three other possibilities (and symmetric): (0, 1̂) both idempotents,
(−1, 1̂) both in U2(Zn) and (0,−1̂) both negatives of idempotents. Therefore,
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in all possible cases [x]ps and [x]qr are of the same sort, that is, there are no
genuine tripotents.

Remarks. (i) Since gcd(ps; qr) = 1, there are integers c, d such that
cps+dqr = 1. Then cps and dqr are the only (two) nontrivial (complementary)
idempotents. For 0 and 1, the negatives give 0 and −1, the last known as order
2 unit.

Thus, −cps and −dqr are the only (two) nontrivial negatives of idempo-
tents.

(ii) This fails for three or more primes. For n = 3 · 5 · 7 = 105 take [6]n.
Then φ([6]n) = ([6]3, [6]5, [6]7) = ([0]3, [1]5,−[1]7), components which are of
different sort and [6]105 is a genuine tripotent.

The only case left is p1 = 2. By the above discussion, an element [x]n ∈ Zn

for n = 2spr22 ...p
rk
k is a genuine tripotent iff [x]2s , [x]pr2

2
, ..., [x]prk

k
are of different

sort.
Since Z2s are local, the odd classes are units and the even classes are

nilpotents. Such rings have only trivial idempotents. Therefore, the situation
is similar to the odd case, but excepting 0, 1,−1 we may have extra order 2
units. Not for Z2 or Z4 but for all Z2s with s ≥ 3.

Hence we can state the following

Proposition 13. Let n = 2spr22 ...p
rk
k and [x]n ∈ Zn.

(i) If k = 2 and s ≤ 2, Zn has no genuine tripotents.
(ii) If k = 2 and s ≥ 3, Zn has genuine tripotents. These are listed

depending on the reminder of the division of pr22 to 2s.
(iii) If k > 2, Zn has genuine tripotents.

Proof. (i) Exactly like the odd case (Proposition 12).
(ii) The genuine tripotents are exactly the classes [x]n such that [x]2s ∈

{3, 5, ..., 2s − 3} and [x]pr2
2

= 0, because only such components are of different

sort. Such tripotents do exist: suppose pr22 = 2sc + d is the division with
quotient c and reminder d. If d 6= 1, 2s−1 then pr22 is a genuine tripotent, and
if d ∈ {1, 2s − 1} then 3pr22 is a genuine tripotent.

More precisely, we have to check the reminders modulo 2s of the multiples
of pr22 , which are less then n (i.e. 2s − 1 such multiples).

If d 6= 1, 2s−1, then pr22 and all odd multiples kpr22 with kd ∈ {3, 5, ..., 2s−3}

are genuine tripotents (and the number of these is the integer part

[
2s − 3

d

]
).

If d ∈ {1, 2s− 1} then pr22 ∈ U2(Zn), so is not genuine. Now the odd multiples
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kpr22 such that k ∈ {3, 5, ..., 2s − 3} are all the genuine tripotents (and these
are exactly 2s−1 − 2).

(iii) Now we can vary the 2-component as in (ii) but also the other (at least
two) pi-components in {0, 1,−1} in order to have components of different sort.
A similar discussion shows that such tripotents do exist and how these can be
listed.

Examples. 1) In Z24 take 3 or 21. For both [3]3 = [21]3 = 0 and [3]8 = 3
respectively, [21]8 = 5. These are the only two genuine tripotents.

2) In Z56 we have only 21 and 35 with the 7-component 0 (see (ii) in the
previous proof).

3) In Z30 take 4: now φ(4) = ([0]2, [1]3,−[1]5) so this is a tripotent and a
genuine one (components of different sort). There is only one other possibility:
([0]2,−[1]3, [1]5), that is 26 = −4.

More general, one can check that for any odd positive integer p, p+ 1 is a
genuine tripotent in Z2p(p+2) and so is the negative 2p2 + 3p− 1.

If p is a prime, these are the only genuine tripotents: there are no possible
components of different sort if a tripotent is odd, so the 2-component must be
0 (i.e. the tripotent is even). There are only two possibilities: p-component
1 and p + 2-compotent −1, which gives p+ 1 or vice-versa, with its negative
2p2 + 3p− 1.
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