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Classification of Filiform Lie Algebras up to
dimension 7 Over Finite Fields
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and M. Trinidad Villar

Abstract

This paper tries to develop a recent research which consists in us-
ing Discrete Mathematics as a tool in the study of the problem of the
classification of Lie algebras in general, dealing in this case with filiform
Lie algebras up to dimension 7 over finite fields. The idea lies in the
representation of each Lie algebra by a certain type of graphs. Then,
some properties on Graph Theory make easier to classify the algebras.
As main results, we find out that there exist, up to isomorphism, six,
five and five 6-dimensional filiform Lie algebras and fifteen, eleven and
fifteen 7-dimensional ones, respectively, over Z/pZ, for p = 2, 3, 5. In
any case, the main interest of the paper is not the computations itself
but both to provide new strategies to find out properties of Lie algebras
and to exemplify a suitable technique to be used in classifications for
larger dimensions.

1 Introduction

At present, the study of Lie algebras in general and filiform ones in par-
ticular is very extended due to their many applications in several branches of
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Physics or Engineering. For instance, solvable Lie algebras are used to de-
scribe efficiently the scalar field sector of supergravity in relation with its non-
perturbative structure encoded in a particular duality group. In this sense, Frè
and other authors [8] used solvable Lie algebras as a decisive and useful tool
for studying some problems relative to black holes and giving an alternative
description of the scalar manifold in a broad class of supergravity theories.

However, the classification of all the types of Lie algebras, except simple
and semi-simple ones, is still an unsolved problem. Regarding this topic, in
2005, Schneider [12] got by computational methods 36; 34, and 34 nilpotent
6-dimensional Lie algebras over the fields Z/2Z, Z/3Z and Z/5Z, respectively.
All these algebras are classified according to their type. In particular, Schnei-
der got 6; 5, and 5 nilpotent 6-dimensional Lie algebras of type [2, 1, 1, 1, 1]
over the fields Z/2Z, Z/3Z and Z/5Z, respectively, which correspond to 6-
dimensional filiform Lie algebras. In the current paper we confirm these re-
sults by using Gröbner bases and we obtain explicitly the law of these filiform
algebras. The same is done for 7-dimensional filiform Lie algebras, for which
we confirm the existence of 15; 11 and 15 seven-dimensional filiform Lie alge-
bras over those fields. Later, Cical, de Graaf and Schneider also dealt with
six-dimensional nilpotent Lie algebras over any field, in 2012 [5].

The main goal of this paper is to step forward in these classifications in
the case of filiform Lie algebras over finite fields. The motivation to deal with
this type of algebras is due to the following two reasons.

In the first place, filiform Lie algebras, which were introduced by M. Vergne
in the late 60’s of the past century [14], constitute the most structured subset
of nilpotent Lie algebras, which allows us to study and classify them easier
than the set of nilpotent Lie algebras. In fact, some of the authors of this
paper have deeply studied these algebras in earlier papers and they already
got the classification of those algebras over real or complex field for dimensions
10, 11 and 12 (see [1], [2] and [7], for instance).

Secondly, with respect to Lie algebras over finite fields, we have already
got several results related to classifications of a low-dimensional family of Lie
algebras that in a certain sense can be considered a precursor of the filiform
Lie algebras: the n-dimensional family Fp defined over the field Z/pZ, with p
prime, and having a basis {u1, . . . , un}, such that: if r, s < n, then [ur, us] = 0;
and [ur, un] is a linear combination of some basis elements u1, . . . , un−1 with
coefficients over the field Z/pZ (note that un does not appear in this last linear
combination).

To get those results we develop in this paper a novel research which con-
sists in using Discrete Mathematics as a tool to classify these families. In fact,
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this research was begun in previous papers as [3, 4, 10, 11], for instance. In
any case, it is convenient to emphasize that the main interest of our work
is not the computations itself. What we try to get is, for one hand, to pro-
vide new strategies to find out properties of Lie algebras and for the other
hand, to exemplify a suitable technique to be used in classifications for larger
dimensions.

The structure of the paper is the following: in the next section some pre-
liminaries on Graph Theory and Lie Theory are given. Sections 3 and 4 are
devoted to explain the procedure of linking a 6-dimensional filiform Lie algebra
over Z/pZ, with p = 2, 3, 5, with bipartite simple graphs. Similarly, Section 5
deals with 7-dimensional filiform Lie algebras.

As a conclusion, we think that this unexpected use of elements of discrete
mathematics could be useful to advance on Lie algebras in the same or similar
way as described in this paper. Analogously, Lie theory could be used to obtain
new properties about these graphs. In future work, our intention is continue
with this topic by increasing both the value of p prime and the dimension of
the algebras.

2 Basic concepts

This section is devoted to recall some concepts on both Lie and Graph Theo-
ries. For a more general review of both theories, the reader can consult [13, 9],
respectively, for instance.

2.1 Preliminaries on Lie algebras

A Lie algebra g over a field K is a vector space over K endowed with a second
inner law, named bracket product, verifying the following three properties

1. Bilinear: [u+v, w] = [u,w] + [v, w]; [u, v+w] = [u, v] + [u,w]; [αu, βv] =
αβ[u, v] ∀α, β ∈ K, ∀u, v, w ∈ g.

2. Anti-commutative: [v, u] = −[u, v],∀u, v ∈ g.

3. Jacobi identity: [[u, v], w] + [[v, w], u] + [[w, u], v] = 0,∀u, v, w ∈ g.

Given a n-dimensional Lie algebra g, its derived series is defined by

C1(g) = g, C2(g) = [g, g], C3(g) = [C2(g),C2(g)], . . . ,Ck(g) = [Ck−1(g),Ck−1(g)], . . .
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When there exists m ∈ N such that Cm(g) ≡ 0, the Lie algebra g is called
solvable.

Given a n-dimensional Lie algebra g, its lower central series is defined as

C
1(g) = g, C

2(g) = [g, g], C
3(g) = [C2(g), g], . . . , . . . , Ck(g) = [Ck−1(g), g], . . .

and g is called nilpotent if there exists m ∈ N such that Cm(g) ≡ 0. It is
immediate to see that every nilpotent Lie algebra is solvable.

A nilpotent Lie algebra g is said to be filiform, if it is verified that

dim g2 = n− 2; . . . dim gk = n− k; . . . dim gn = 0,

with dim g = n, and gk = [g, gk−1], 2 ≤ k ≤ n.

A basis {e1, . . . , en} of g is called an adapted basis if

[e1, e2] = 0; [e1, eh] = eh−1 (h = 3, . . . , n),

[e2, eh] = [e3, eh] = 0 (h = 3, . . . , n).

Note that the definition of filiformity assures that every filiform Lie algebra
has an adapted basis. It is easy to deduce that, with respect to this basis, it
is verified

g2 ≡ {e2, . . . , en−1}, g3 ≡ {e2, . . . , en−2}, . . . , gn−1 ≡ {e2}, gn ≡ {0}.

A filiform Lie algebra g is said to be model if the only nonzero brackets
between the elements of an adapted basis are the following

[e1, eh] = eh−1 (h = 3, . . . , n).

These brackets are called brackets due to the filiformity of the algebra and they
are not usually indicated in the law of the filiform Lie algebra because they
are supposed.

Now, to finish the preliminaries on Lie algebras in general, we recall the
following definition.

An isomorphism between Lie algebras is a vector space isomorphism φ such
that φ([u, v]) = [φ(u), φ(v)] for each pair of vectors u and v in the algebra.

Then, from here on, we will suppose that all the Lie algebras appearing in
this paper are filiform and that all bases are adapted. In the same way, the
Jacobi identity [[a, b], c] + [[b, c], a] + [[c, a], b] = 0, associated with vectors a, b
and c, will be denoted by J(a, b, c) = 0.

Let us now recall some concepts on Graph Theory.
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2.2 Graph Theory terminology

A simple graph G = (V (G), E(G)) consists of two finite sets: V (G), the vertex
set of the graph, which is a nonempty set of elements called vertices, and E(G),
the edge set of the graph, which is a set of 2-subsets of vertices. The elements
of E(G) are called edges. When E(G) is the empty set, the graph is termed
null graph. Every edge e ∈ E(G) is assigned an unordered pair of vertices
{u, v}, (u 6= v) called the end vertices of e, and e is said to join u and v.

A weighted graph is a simple graphG in which each edge e has been assigned
a real number w(e), called the weight of e.

When the weight of an edge is equal to 1, this value will be omitted in the
figure of the graph. For the sake of simplicity we will refer to both simple and
weighted graph as a graph when no confusion is produced.

Two vertices defining an edge are called adjacent or neighbours. The set
of neighbours of a vertex v is denoted by N(v) and, for a simple graph, the
degree of v is δ(v) = |N(v)|.

A bipartite graph is a graph whose vertices can be partitioned into two
disjoint sets, V1 and V2 such that every edge joins a vertex in V1 to one in V2.
An example is shown in Figure 1.

Figure 1: A weighted graph and a bipartite graph.

The concept of adjacency matrix of a graph is very useful in this paper.
Let G be a graph with n vertices v1, v2, . . . , vn. The adjacency matrix of G,
with respect to this particular listing of the vertices of G, is the n× n matrix
M(G) = (mij) where the (i, j)− th entry mij is the weight of the edge joining
the vertex vi to the vertex vj is this edge is defined and 0 otherwise.

As an example, M represents the adjacency matrix of the graph in the left
of Figure 1.
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M =


0 1 1 0 1
1 0 1 0 0
1 1 0 2 0
0 0 2 0 2
1 0 0 2 0


The adjacency matrix of the weighted graph of Figure 1.

We recall that any bipartite graph G = (V,E) admits an ordering of its
vertex set and a partition V = V1∪V2 in such a way that its adjacency matrix
can be expressed as follows

MG =

(
O1 M
M t O2

)
where

• Oi denotes the null matrix of dimension |Vi| × |Vi|, for i = 1, 2.

• M is the matrix of dimension |V1| × |V2| collecting the adjacencies be-
tween vertices of V1 and V2.

3 6-dimensional filiform Lie algebras over Z/pZ, with p =
2, 3, 5

In the first place, authors would like to explain the reasons for dealing with
filiform Lie algebras of dimension 6. Note that n = 6 is the lower dimension
of a filiform Lie algebra in which non-trivial (non-null or not corresponding to
the filiformity) brackets appear. More concretely,

• All the brackets are null in dimension 2. The unique algebra is the
abelian.

• For dimension 3 and 4, all the brackets are either non-null or correspond-
ing to the filiformity. The unique algebra is the model.

• The unique non-trivial bracket of a filiform Lie algebra g of dimension 5 is
[e4, e5] = c245e2. Therefore, the corresponding matrix of g is Mg = (c245).
In a natural way, the adjacency matrix of a bipartite graph G can be

constructed as follows MG =

(
0 c245
c245 0

)
. The bipartite graphs G



CLASSIFICATION OF FILIFORM LIE ALGEBRAS UP TO DIMENSION 7
OVER FINITE FIELDS 191

whose adjacency matrix is MG can be either a pair of non adjacent
vertices (for c245 = 0), either a pair of adjacent vertices whose edge has
the weight c245 > 0.

Consequently, we devote this section to classify 6-dimensional filiform Lie
algebras over Z/pZ, with p = 2, 3, 5.

Let F
p
6 be the family of filiform Lie algebras of dimension 6 defined over

the finite field Z/pZ, having a basis {e1, e2, e3, e4, e5, e6}. According to the
definition of this type of algebras, the law of an algebra g ∈ F

p
6 with respect

to the basis {ek}6k=1 is given by the following brackets (filiformity brackets are
omitted)

[ei, ej ] =

4∑
h=2

chijeh for 4 ≤ i < j ≤ 6

Each algebra g ∈ F
p
6 is associated with a matrix of order 3× 3 determined

by the structure constants of g, that is

Mg =

 c245 c345 c445
c246 c346 c446
c256 c356 c456


where c345 = c445 = c446 = 0 due to filiformity reasons (see [2], for instance).

Example 1

Let g ∈ F2
6 be a filiform Lie algebra whose law is given by the following

brackets (filiformity brackets have been omitted)

[e4, e5] = e2, [e4, e6] = e3, [e5, e6] = e2 + e4.

The matrix associated with g is

Mg =

 1 0 0
0 1 0
1 0 1


Next, to classify filiform Lie algebras we study the matrices Mg and com-

pute the possible values of coefficients ckij by using Jacobi identities.

Proposition 1. Given g ∈ F
p
6, the corresponding matrix Mg is the following,

where a, b, c ∈ Z/pZ

Mg =

 a 0 0
b a 0
c b a
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Proof:

It is straightforward by using J(e1, e4, e6) = 0 and J(e1, e5, e6) = 0. �

Note that this result allows us to set the following

Corollary 1. There exists a bijective map between matrices Mg and the set
of three-dimensional vectors (a, b, c), with a, b, c ∈ Z/pZ.

In turn, by denoting the matrix

M(a,b,c) =

 a 0 0
b a 0
c b a


to be the corresponding matrix of the vector (a, b, c), Corollary 1 permits us
to justify the following relationship between three-dimensional vectors.

Definition 1. The vector (a, b, c) is related with the filiform Lie algebra g if
the matrix associated with g is M(a,b,c).

Two three-dimensional vectors (a, b, c) and (a′, b′, c′), with components in
Z/pZ, are equivalent (denoted by (a, b, c) ∼ (a′, b′, c′)) if their corresponding
matrices are associated with isomorphic filiform Lie algebras.

Now, considering these results, 6-dimensional filiform Lie algebras over
Z/pZ can be classified into equivalence classes according to the field of def-
inition. For computations we have used the symbolic computation package
Singular, due to that it is very suitable to deal with Gröbner basis. It is
convenient to emphasize that these bases are used to determine whether two
vectors are equivalent and could also be used in related works in future. More
concretely, we have implemented Algorithm 3.1 to obtain the non-isomorphic
6-dimensional filiform Lie algebras over Z/pZ.

Algorithm 3.1

Input: (V,≺) set of vectors (a, b, c) in Z/pZ with an order relation ≺.
Output: list of non-equivalent vectors (a, b, c) in Z/pZ.
begin

for all v ∈ V and v′ ∈ V such that v ≺ v′ do
if v and v′ are equivalent then

V = V − {v′}
end if

end for
return V

end

By using Algorithm 3.1 for p = 2, 3, 5, the following results were obtained.
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Theorem 1. Up to isomorphism, there exist six 6-dimensional filiform Lie
algebras over Z/2Z. They are shown in Table 1, in which the corresponding
vector and the law of each algebra are indicated.

vector algebra law

(0, 0, 0) µ1
6,2 [e4, e5] = 0, [e4, e6] = 0, [e5, e6] = 0

(0, 0, 1) µ2
6,2 [e4, e5] = 0, [e4, e6] = 0, [e5, e6] = e2

(0, 1, 0) µ3
6,2 [e4, e5] = 0, [e4, e6] = e2, [e5, e6] = e3

(0, 1, 1) µ4
6,2 [e4, e5] = 0, [e4, e6] = e2, [e5, e6] = e2 + e3

(1, 0, 0) ∼ (1, 0, 1) µ5
6,2 [e4, e5] = e2, [e4, e6] = e3, [e5, e6] = e4

(1, 1, 0) ∼ (1, 1, 1) µ6
6,2 [e4, e5] = e2, [e4, e6] = e2 + e3, [e5, e6] = e3 + e4

Table 1: 6-dimensional filiform Lie algebras over Z/2Z.

Theorem 2. Up to isomorphism, there exist five 6-dimensional filiform Lie
algebras over Z/3Z. Their corresponding representative vectors are

1. (0, 0, 0).

2. (0, 0, c), c = 1, 2.

3. (0, b, c), b = 1, 2 and c = 0, 1, 2.

4. (a, 0, c), a = 1, 2 and c = 0, 1, 2.

5. (a, b, c), a, b = 1, 2 and c = 0, 1, 2.

Theorem 3. Up to isomorphism, there exist five 6-dimensional filiform Lie
algebras over Z/5Z. Their corresponding representative vectors are

1. (0, 0, 0).

2. (0, 0, c), c = 1, 2, 3, 4.

3. (0, b, c), b = 1, 2, 3, 4 and c = 0, 1, 2, 3, 4.

4. (a, 0, c), a = 1, 2, 3, 4 and c = 0, 1, 2, 3, 4.

5. (a, b, c), a, b = 1, 2, 3, 4 and c = 0, 1, 2, 3, 4.



CLASSIFICATION OF FILIFORM LIE ALGEBRAS UP TO DIMENSION 7
OVER FINITE FIELDS 194

4 Associating graphs with 6-dimensional filiform Lie al-
gebras over Z/pZ, with p = 2, 3, 5

Let g ∈ F
p
6 be an algebra having a basis {e1, e2, e3, e4, e5, e6} and law with

respect to this basis is given by the following brackets (filiformity brackets are
omitted)

[ei, ej ] =

4∑
h=2

chijeh for 4 ≤ i < j ≤ 6

In this section, we show a procedure which links the family F
p
6 with bipar-

tite weighted graphs.

Let us note that the only non-trivial brackets of g are [e4, e5], [e4, e6] and
[e5, e6]. Moreover, c345 = c445 = c446 = 0 due to filiformity reasons (see [2],
for instance). Consequently, the bracket [e4, e5] is a linear combination of a
unique basis element, e2; [e4, e6] is of two basis elements e2 and e3; and [e5, e6]
is of three basis elements e2, e3 and e4.

This way, each algebra g ∈ F
p
6 can be represented by a 3× 3 square matrix

determined by the structure constants of g. More concretely, the element in the
k-th row and l-th column is the coefficient of el+1 in the linear combination
of the k-th non-trivial bracket. For instance, m32 is the coefficient of e3 in
[e5, e6], as can be checked in Mg.

Mg =

e2 e3 e4( )c245 0 0 [e4, e5]
c246 c346 0 [e4, e6]
c256 c356 c456 [e5, e6]

In a natural way, we construct the adjacency matrix MG of a bipartite
graph G as follows

MG =

e2 e3 e4 [e4, e5] [e4, e6] [e5, e6]


0 0 0 c245 c246 c256 e2
0 0 0 0 c346 c356 e3
0 0 0 0 0 c456 e4
c245 0 0 0 0 0 [e4, e5]
c246 c346 0 0 0 0 [e4, e6]
c256 c356 c456 0 0 0 [e5, e6]
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Let us observe that, as it was indicated in section 2.2, MG is a symmetric
and square matrix of dimension 6 formed by four submatrices of order 3 × 3

verifying MG =

(
O M t

g

Mg O

)
where O denotes the null matrix of dimension

3.

Previous matrix is the adjacency matrix of a bipartite graph G whose
set of vertices is partitioned into the subsets V1 = {e2, e3, e4} (corresponding
with the basis elements which can appear in the brackets of g) and V2 =
{[e4, e5], [e4, e6], [e5, e6]} (corresponding with the non-trivial brackets of g).
Moreover, the weight of the edge joining a vertex eh ∈ V1 and a vertex [ei, ej ] ∈
V2 coincides with chij , i.e. with the coefficient of eh in [ei, ej ].

In the following figure, we show a representation of a bipartite graph G
associated with any algebra g ∈ F

p
6 .

Figure 2: General bipartite graph associated with any algebra of Fp
6 .

As an example of the application of this procedure, let us see the following.

Example 2

Let now g ∈ F3
6 be an algebra whose law is given by

[e4, e5] = e2, [e4, e6] = e2 + e3, [e5, e6] = 2e2 + e3 + e4.

The matrix representing g is

Mg =

 1 0 0
1 1 0
2 1 1


In a natural way, we construct the adjacency matrix MG of a bipartite

graph G in the following manner
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MG =

e2 e3 e4 [e4, e5] [e4, e6] [e5, e6]


0 0 0 1 1 2 e2
0 0 0 0 1 1 e3
0 0 0 0 0 1 e4
1 0 0 0 0 0 [e4, e5]
1 1 0 0 0 0 [e4, e6]
2 1 1 0 0 0 [e5, e6]

Previous matrix is the adjacency matrix of a bipartite graph G whose
set of vertices is partitioned into the subsets V1 = {e2, e3, e4} and V2 =
{[e4, e5], [e4, e6], [e5, e6]}. Moreover, the weights of the edges < e2, [e4, e5] >,
< e3, [e4, e6] >, < e4, [e5, e6] >, < e2, [e4, e6] >, < e3, [e5, e6] > and
< e2, [e5, e6] > are 1, 1, 1, 1, 1 and 2, respectively.

In the following figure, we show a representation of the bipartite graph G
associated with the algebra g.

Figure 3: Graph associated with the algebra g.

Note that with the described procedure, the results given in the above
section can be restated by considering the associated graphs with the Lie
algebras. One example is the following.

Theorem 4. Up to isomorphism, there exist six 6-dimensional filiform Lie
algebras over Z/2Z. They are shown in Figure 4, in which the corresponding
vector, the graph and the law of each algebra are indicated.

As a consequence of previous theorems, every 6-dimensional filiform Lie
algebra over Z/pZ can be obtained either from its associated vector given



CLASSIFICATION OF FILIFORM LIE ALGEBRAS UP TO DIMENSION 7
OVER FINITE FIELDS 197

Figure 4: 6-dimensional filiform Lie algebras over Z/2Z.

by Definition 1, either from its representative weighted graph. Moreover, by
simple operations over these graphs, all 6-dimensional filiform Lie algebras
over Z/pZ can be constructed. This can be summarized in the next

Theorem 5. Let g ∈ F
p
6 be a non-model filiform Lie algebra and let (a, b, c)

be its related vector. For p = 2, 3, 5, the following statements are held.

1. If a 6= 0, the vector (a+ 1, b, c) (module p) is related with another Lie al-
gebra h ∈ F

p
6, which is isomorphic with g, whenever a+1 6= 0 (module p).

The graph associated with g has the same weight in edges from vertex
[e4, e5] to e2, from [e4, e6] to e3, and from [e5, e6] to e4. Then by in-
creasing the same weight (module p) of edges between each pair of these
vertices, a new graph whose associated algebra is isomorphic with g is
obtained.

2. If a, b 6= 0, the vector (a, b+1, c) (module p) is related with another Lie al-
gebra h ∈ F

p
6, which is isomorphic with g, whenever b+1 6= 0 (module p).

The graph associated with g has the same weight in edges from vertex
[e4, e6] to e2 and from [e5, e6] to e3. Then by increasing the same weight
(module p) of edges between each pair of these vertices, a new graph
whose associated algebra is isomorphic with g is obtained.
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3. Similarly, if p = 2 and a = 1 or else p ∈ {3, 5} and whatever a is, it is
satisfied (a, b, c) ∼ (a, b, c+1), whenever (a, b, c+1) 6= (0, 0, 0) (module p).
In terms of graphs, it means to increase the weight of an edge (module
p) from vertex [e5, e6] to e2 in the graph associated with g.

Observe that all considered graphs in Theorem 5 are subgraphs of the
graph described in Figure 2, where a = c245, c

3
46, c

4
56, b = c246, c

3
56 and c = c256.

Example 3

Let us consider the algebra g in Example 2 (recall p = 3) whose associated
graph is G (shown in Figure 5). Theorem 5 allows us to affirm that

1. The graph G1 (shown in Figure 5) is associated with an algebra isomor-
phic to g, since G1 is obtained from G by increasing one the weight of
the edge < e2, [e5, e6] >.

2. The graph G2 (shown in Figure 5) is associated with an algebra isomor-
phic to g, since G2 is obtained from G by increasing one the weight of
the edges < e2, [e4, e6] > and < e3, [e5, e6] >.

3. The graph G3 (shown in Figure 5) is associated with an algebra isomor-
phic to g, since G3 is obtained from G by increasing two the weight of
the edge < e2, [e5, e6] >.

Figure 5: Different graphs associated with isomorphic algebras.
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5 7-dimensional filiform Lie algebras over Z/pZ, with p =
2, 3, 5

In this section, previous results obtained in dimension 6 are generalized to
dimension 7 by using the same procedure. So, we only include the main
differences between both dimensions and the final results.

Let Fp
7 be the family of filiform Lie algebras of dimension 7 defined over the

finite field Z/pZ, having a basis {e1, e2, e3, e4, e5, e6, e7}. Each algebra g ∈ F
p
7

is associated with the matrix of order 4× 6

Mg =


c245 c345 c445 c545
c246 c346 c446 c546
c247 c347 c447 c547
c256 c356 c456 c556
c257 c357 c457 c557
c267 c367 c467 c567


Due to the filiformity the two first rows and the last column of the previous

matrix are null, Mg can be reduced to the following matrix of order 4× 3

M∗g =


c247 0 0
c256 0 0
c257 c357 0
c267 c367 c467


Now, we classify filiform Lie algebras in dimension 7 in the same way as in

dimension 6. In the first place, given g ∈ F
p
7 , the corresponding matrix Mg is

the following, where a, b, c, d ∈ Z/pZ

M∗g =


a 0 0

b− a 0 0
c b 0
d c b


We now set that there exists a bijective map between matrices M∗g and the

set of four-dimensional vectors (a, b, c, d), with a, b, c, d ∈ Z/pZ.
Then, in a similar way as before, the vector (a, b, c, d) is related with the

filiform Lie algebra g if the matrix associated with g is M∗(a,b,c,d). This fact
allows us to establish the following relationship between four-dimensional vec-
tors: two four-dimensional vectors (a, b, c, d) and (a′, b′, c′, d′), with compo-
nents in Z/pZ, are equivalent (denoted by (a, b, c, d) ∼ (a′, b′, c′, d′)) if their
corresponding matrices are associated with isomorphic filiform Lie algebras.
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In the following figure, we show a representation of a bipartite graph G
associated with any algebra g ∈ F

p
7 .

Figure 6: General bipartite graph associated with any algebra of Fp
7 .

Let us note that there exists a significative difference in the case p = 2.
For this reason, we consider this case separately.

5.1 7-dimensional filiform Lie algebras over Z/2Z

In this case, a consequence of Engel Theorem for filiform Lie algebras of di-
mension 7 over a field of characteristic 2 assures the existence of two basis
B1 and B2 where, besides of the bracket products of the adapted basis, there
exist these other ones [6]:

w.r.t.B1 : [e4, e6] = e2, [e4, e7] = e3, [e5, e6] = e3, [e5, e7] = e2,
[e6, e7] = e3 + c467e4.

w.r.t.B2 : [e4, e6] = e2, [e4, e7] = c247e2, [e5, e6] = e3, [e5, e7] = e4,
[e6, e7] = e5.

As a consequence, the following classification is obtained

Theorem 6. Up to isomorphism, there exist fifteen 7-dimensional filiform Lie
algebras over Z/2Z.

• The first eleven are shown in Table 2, in which the corresponding vector
and the law of each algebra are indicated.

• Starting from B1, the following two non-isomorphic filiform Lie algebras
are obtained
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vector algebra law

(0, 0, 0, 0) µ1
7,2 [e4, e7] = 0, [e5, e6] = 0, [e5, e7] = 0, [e6, e7] = 0

(0, 0, 0, 1) µ2
7,2 [e4, e7] = 0, [e5, e6] = 0, [e5, e7] = 0, [e6, e7] = e2

(0, 0, 1, 0) µ3
7,2 [e4, e7] = 0, [e5, e6] = 0, [e5, e7] = e2, [e6, e7] = e3

(0, 0, 1, 1) µ4
7,2 [e4, e7] = 0, [e5, e6] = 0, [e5, e7] = e2, [e6, e7] = e2 + e3

(0, 1, 0, 0) ∼ (0, 1, 0, 1) µ5
7,2 [e4, e7] = 0, [e5, e6] = e2, [e5, e7] = e3, [e6, e7] = e4

(0, 1, 1, 0) ∼ (0, 1, 1, 1) µ6
7,2 [e4, e7] = 0, [e5, e6] = e2, [e5, e7] = e2 + e3, [e6, e7] = e3 + e4

(1, 0, 0, 0) ∼ (1, 0, 0, 1) µ7
7,2 [e4, e7] = e2, [e5, e6] = e2, [e5, e7] = 0, [e6, e7] = 0

(1, 0, 1, 0) ∼ (1, 0, 1, 1) µ8
7,2 [e4, e7] = e2, [e5, e6] = e2, [e5, e7] = e2, [e6, e7] = e3

(1, 1, 0, 0) ∼ (1, 1, 0, 1) µ9
7,2 [e4, e7] = e2, [e5, e6] = 0, [e5, e7] = e3, [e6, e7] = e4

(1, 1, 1, 0) µ10
7,2 [e4, e7] = e2, [e5, e6] = 0, [e5, e7] = e2 + e3, [e6, e7] = e3 + e4

(1, 1, 1, 1) µ11
7,2 [e4, e7] = e2, [e5, e6] = 0, [e5, e7] = e2 + e3, [e6, e7] = e2 + e3 + e4

Table 2: 7-dimensional filiform Lie algebras over Z/2Z.

µ12
7,2 ≡ [e4, e6] = e2, [e4, e7] = e3, [e5, e6] = e3, [e5, e7] = e2,

[e6, e7] = e3

µ13
7,2 ≡ [e4, e6] = e2, [e4, e7] = e3, [e5, e6] = e3, [e5, e7] = e2,

[e6, e7] = e3 + e4

• Starting from B2, the following two non-isomorphic filiform Lie algebras
are obtained:

µ14
7,2 ≡ [e4, e6] = e2, [e4, e7] = 0, [e5, e6] = e3, [e5, e7] = e4, [e6, e7] =
e5.

µ15
7,2 ≡ [e4, e6] = e2, [e4, e7] = e2, [e5, e6] = e3, [e5, e7] = e4,

[e6, e7] = e5.

5.2 7-dimensional filiform Lie algebras over Z/pZ, with p = 3, 5

Let us note that, in these cases, there does not exist any difference and we only
consider the bracket products of the adapted basis. Following the procedure
described at the beginning of this section, the following results are obtained.

Theorem 7. Up to isomorphism, there exist eleven 7-dimensional filiform Lie
algebras over Z/3Z. For u, u′ ∈ {1, 2} and v, v′ ∈ {0, 1, 2}, their corresponding
representative vectors are

1. (0, 0, 0, 0),

2. (0, 0, 0, u),

3. (0, 0, u, 0),
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4. (0, 0, u, u′),

5. (0, u, v, v′),

6. (u, 0, 0, v),

7. (u, 0, u′, v),

8. (u, u, 0, 0) ∼ (u, u, u′, 2u),

9. (u, u, u′, 0) ∼ (u, u, 0, u),

10. (u, u, v, u) ∼ (u, u, v, 2u),

11. (u, 2u, v, v′).

Theorem 8. Up to isomorphism, there exist thirteen 7-dimensional filiform
Lie algebras over Z/5Z. For u, u′ ∈ {1, 2, 3, 4} and v, v′ ∈ {0, 1, 2, 3, 4}, their
corresponding representative vectors are

1. (0, 0, 0, 0),

2. (0, 0, 0, u),

3. (0, 0, u, 0),

4. (0, 0, u, u′),

5. (0, u, v, v′),

6. (u, 0, 0, v),

7. (u, 0, u′, v),

8. (u, u, v, 0),

9. (u, u, v, u) ∼ (u, u, v, 4u),

10. (u, u, v, 2u) ∼ (u, u, v, 3u),

11. (u, 2u, v, v′),

12. (u, 3u, v, v′),

13. (u, 4u, v, v′).

We can associate graphs with these algebras following the same procedure
as in the previous section (we consider that it is not worth to include again
the complete details).



CLASSIFICATION OF FILIFORM LIE ALGEBRAS UP TO DIMENSION 7
OVER FINITE FIELDS 203

References

[1] L. Boza Prieto, F.J. Echarte Reula and J. Núñez Valdés, Classification
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tratamiento de algunos problemas de la Teoŕıa de Lie, Actas de las VI
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