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APPROXIMATING FIXED POINTS OF
NONSELF CONTRACTIVE TYPE
MAPPINGS IN BANACH SPACES

ENDOWED WITH A GRAPH

Laszlo Balog, Vasile Berinde and Mădălina Păcurar
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Abstract

Let K be a non-empty closed subset of a Banach space X endowed
with a graph G. We obtain fixed point theorems for nonself G-contractions
of Chatterjea type. Our new results complement and extend recent re-
lated results [Berinde, V., Păcurar, M., The contraction principle for
nonself mappings on Banach spaces endowed with a graph, J. Nonlinear
Convex Anal. 16 (2015), no. 9, 1925–1936; Balog, L., Berinde, V., Fixed
point theorems for nonself Kannan type contractions in Banach spaces
endowed with a graph, Carpathian J. Math. 32 (2016), no. 3 (in press)]
and thus provide more general and flexible tools for studying nonlinear
functional equations.

1 Introduction

Let X, Y be linear spaces and F : D ⊂ X → Y be a nonlinear mapping. One
of the most effective ways to solve the equation

F (x) = 0, x ∈ D, (1.1)
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is to convert it equivalently into a fixed point problem of the form

x = T (x), x ∈ K, (1.2)

where T : K ⊂ X → X is a mapping constructed by a certain scheme.
For example, in the case of the well-known Newton method, considered

here for the sake of simplicity in X = R, the iteration function F involved in
(1.2) is given by:

Tx = x− F (x)/F ′(x), x ∈ K.

The equivalent form (1.2) of equation (1.1) is extremely important for at least
two major reasons:

1. Problem (1.2) can be solved by applying a suitable fixed point theorem,
thus obtaining an existence or an existence and uniqueness result for the
original problem (1.1);

2. The particular form of problem (1.2) now provides a direct way to con-
struct a simple iterative scheme to approximate the solution (s) of (1.1),
i.e.,

xn+1 = Txn, n ≥ 0,

with x0 ∈ K the starting value.

One of the most important and flexible tools in nonlinear analysis to deal with
a problem of the form (1.2) is the well-known Banach contraction principle,
stated here in its complete form, see for example [19].

Theorem 1. Let (X, d) be a complete metric space and T : X → X a strict
contraction, i.e., a map satisfying

d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X , (1.3)

where 0 ≤ a < 1 is constant. Then:
(p1) T has a unique fixed point p in X (i.e., Tp = p);
(p2) The Picard iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . . (1.4)

converges to p, for any x0 ∈ X.
(p3) The following estimate holds

d(xn+i−1, p) ≤
ai

1− a
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (1.5)
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As it can be seen from (1.3), Theorem 1 can be applied only to nonlinear
equations (1.2) with T a continuous self mapping.

But, most of the concrete problems of the form (1.1) or (1.2) we may
encounter in pure and applied mathematics involve generallydiscontinuous
and/or non-self mappings T . This demand motivated authors to search for
more general and more flexible fixed point tools that could be applied to such
general nonlinear problems.

Kannan [42] has been the first one to consider in this context discontinuous
self mappings T , by considering instead of (1.3) the following alternative and

independent contractive condition: there exists a constant a ∈

[
0,

1

2

)
such

that
d(Tx, Ty) ≤ a

[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X. (1.6)

On the other hand, the study of non-self mappings started with the paper
by Caristi [28], in the case of nonself single-valued contractions, and with the
paper by Assad and Kirk [13], for non-self multi-valued contractive mappings
T : K → P(X), where (X, d) is a convex metric space in the sense of Menger
and K is a non-empty closed subset of X.

For some recent and more general results on this topic we refer to [16], [17],
[19], [3], [4] and references therein. In a recent paper [20], the second author
and M. Păcurar established two fixed point theorems for non self contractions
defined on Banach spaces endowed with a graph, while very recently [15], the
present authors extended these results to non-self Kannan type contractions
T : X → X on Banach spaces endowed with a graph.

The main aim of the present work is to extend the results in [20] and
[15] to the case of mappings satisfying a dual condition of (1.6) which is due
to Chatterjea [30] and is independent of both contractive condition (1.3) and
(1.6): there exists a ∈ (0, 12 ) such that

d(Tx, Ty) ≤ a
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X. (1.7)

To accomplish this task, we need some basic prerequisites related to fixed
point theorems for self and non self contractions in Banach spaces or convex
metric spaces endowed with a graph, basically taken from [20] and [15], and
which are presented in the next section.

2 Metric spaces endowed with a graph

Let (X, d) be a metric space and let ∆ denote the diagonal of the Cartesian
product X × X. Consider now a directed simple graph G = (V (G), E(G))
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such that the set of its vertices, V (G), coincides with X and E(G), the set of
its edges, contains all loops, i.e., ∆ ⊂ E(G).

By G−1 we denote the converse graph of G, i.e., the graph obtained by
G by reversing its edges, i.e.,

E(G−1) = {(y, x) ∈ X ×X : (x, y) ∈ E(G)}.

If x, y are vertices in the graph G, then a path from x to y of length N is a
sequence {xi}Ni=1 of N + 1 vertices of G such that

x0 = x, xN = y and (xi−1, xi) ∈ E(G), i = 1, 2, . . . , N.

A graph G is said to be connected if there is at least a path between any
two vertices. If G = (V (G), E(G)) is a graph and H ⊂ V (G), then the graph
(H,E(H)) with E(H) = E(G)∩(H×H) is called the subgraph of G determined
by H. Denote it by GH .

If G̃ = (X,E(G̃)) is the symmetric graph obtained by putting together
the vertices of both G and G−1, i.e.,

E(G̃) = E(G) ∪ E(G−1),

then G is called weakly connected if G̃ is connected.
A mapping T : X → X is said to be (well) defined on a metric space

endowed with a graph G if it has the property

∀x, y ∈ X, (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G). (2.1)

According to [41], a mapping T : X → X, which is well defined on a metric
space endowed with a graph G, is called a G-contraction if there exists a
constant α ∈ (0, 1) such that for all x, y ∈ X with (x, y) ∈ E(G) we have

d(Tx, Ty) ≤ α · d(x, y). (2.2)

Example 1. If G0 is the complete graph on X, that is, E(G0) = X × X,
then a G0-contraction is a usual contraction in the sense of Banach, i.e., it
satisfies condition (1.3), while a G0-Kannan contraction is a usual Kannan
contraction, i.e., it satisfies condition (1.6).

3 Main results

Let X be a Banach space, K a nonempty closed subset of X and T : K → X
a non-self mapping. If x ∈ K is such that Tx /∈ K, then we can always choose
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an y ∈ ∂K (the boundary of K) such that y = (1 − λ)x + λTx (0 < λ < 1),
which actually expresses the fact that

d(x, Tx) = d(x, y) + d(y, Tx), y ∈ ∂K, (3.1)

where we denoted d(x, y) = ‖x− y‖.
In general, the set Y of points y satisfying condition (3.1) above may

contain more than one element. We suppose Y is always nonempty.
In this context we shall need the following important concept first intro-

duced and used in [19].

Definition 1. Let X be a Banach space, K a nonempty closed subset of X
and T : K → X a non-self mapping. Let x ∈ K with Tx /∈ K and let y ∈ ∂K
be the corresponding elements given by (3.1). If, for any such elements x, we
have

d(y, Ty) ≤ d(x, Tx), (3.2)

for all corresponding y ∈ Y , then we say that T has property (M).

Note that the non-self mapping T in the next example has property (M).

Example 2. ([20], Example 4) Let X = [0, 1]∪{3} be endowed with the usual
norm and let K = {0, 1, 3}. Consider the function T : K → X, defined by
Tx = 0, for x ∈ {0, 1} and T3 = 0.5. As the only value x ∈ K with Tx /∈ K
is x = 3 and to it corresponds the set Y = {1}, and since

d(y, Ty) = d(1, T1) = |1− 0| < |3− 0.5| = d(3, T3) = d(xTx),

property (M) obviously holds.

A condition quite similar to (3.2), called inward condition, has been used
by Caristi [28] to obtain a generalization of contraction mapping principle for
non self mappings. The inward condition is more general than property (M)
since it does not require y in (3.1) to belong to ∂K, see also [37] (this has been
communicated to us by Professor Rus [69]).

Note also that, in general, the set Y of points y satisfying condition (3.1)
above may contain more than one element.

For a non self mapping T : K → X we shall say that it is (well) defined
on the Banach space X endowed with the graph G if it has this property for
the subgraph of G induced by K, that is,

(x, y) ∈ E(G) with Tx, Ty ∈ K implies (Tx, Ty) ∈ E(G) ∩ (K ×K), (3.3)

for all x, y ∈ K.
The next theorem establishes a fixed point theorem for non self Chatterjea

contractions defined on a Banach space endowed with a graph.
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Theorem 2. Let (X, d,G) be a Banach space endowed with a simple directed
and weakly connected graph G such that the property (L) holds, i.e., for any
sequence {xn}∞n=1 ⊂ X with xn → x as n→∞ and (xn, xn+1) ∈ E(G) for all
n ∈ N, there exists a subsequence {xkn

}∞n=1 satisfying

(xkn , x) ∈ E(G), ∀n ∈ N. (3.4)

Let K be a nonempty closed subset of X andlet T : K → X be a Chatterjea
contraction, i.e., a mapping for which there exists a constant a ∈ [0, 1/2) such
that

d(Tx, Ty) ≤ a
[
d(x, Ty) + d(y, Tx)

]
, for all (x, y) ∈ E(GK), (3.5)

where GK is the subgraph of G determined by K.
If KT := {x ∈ ∂K : (x, Tx) ∈ E(G)} 6= ∅, T has property (M) satisfies

Rothe’s boundary condition
T (∂K) ⊂ K, (3.6)

then
(i) Fix (T ) = {x∗};
(ii) Picard iteration {xn = Tnx0}∞n=1 converges to x∗, for all x0 ∈ KT ,

and the following estimate holds

d(xn, x
∗) ≤ δ[n/2]

1− δ
max{d(x0, x1), d(x1, x2)} , n = 0, 1, 2, . . . (3.7)

where δ =
a

1− a
.

Proof. If T (K) ⊂ K, then T is actually a self mapping of the closed set K and
the conclusion follows by Chatterjea fixed point theorem [30] with X = K.
Therefore, in the following we consider only the case T (K) 6⊂ K. Let x0 ∈ KT .
This means that (x0, Tx0) ∈ E(G) and in view of (2.1), we have

(Tnx0, T
n+1x0) ∈ E(G), ∀n ∈ N. (3.8)

Denote yn := Tnx0, for all n ∈ N.
By (3.6) it also follows that Tx0 ∈ K.
Denote x1 := y1 = Tx0. Now, if Tx1 ∈ K, set x2 := y2 = Tx1. If

Tx1 /∈ K, we can choose an element x2 on the segment [x1, Tx1] which also
belong to ∂K, that is,

x2 = (1− λ)x1 + λTx1 (0 < λ < 1).

Continuing in this way we obtain two sequences {xn} and {yn} whose terms
satisfy one of the following properties:
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i) xn := yn = Txn−1, if Txn−1 ∈ K;
ii) xn = (1− λ)xn−1 + λTxn−1 ∈ ∂K (0 < λ < 1), if Txn−1 /∈ K.
To simplify the argumentation in the proof, let us denote

P = {xk ∈ {xn} : xk = yk = Txk−1}

and
Q = {xk ∈ {xn} : xk 6= Txk−1}.

Note that {xn} ⊂ K for all n ∈ N and that, if xk ∈ Q, then both xk−1 and
xk+1 belong to the set P .

Moreover, by virtue of (3.6), we cannot have two consecutive terms of
{xn} in the set Q (but we can have two consecutive terms of {xn} in the set
P ) .

We claim that {xn} is a Cauchy sequence.
To prove this, we must discuss three different cases: Case I. xn, xn+1 ∈ P ;

Case II. xn ∈ P , xn+1 ∈ Q; Case III. xn ∈ Q, xn+1 ∈ P ;
Case I. xn, xn+1 ∈ P .
In this case we have xn = yn = Txn−1, xn+1 = yn+1 = Txn, and hence

d(xn+1, xn) = d(yn+1, yn) = d(Txn, Txn−1).

Since {xn} ⊂ K for all n ∈ N, by (3.8) (xn, xn−1) ∈ E(GK), and so by the
contraction condition (3.5), we get

d(xn+1, xn) = d(Txn, Txn−1) ≤ a[d(xn, Txn−1) + d(xn−1, Txn)]

= ad(xn−1, xn+1) ≤ a[d(xn−1, xn) + d(xn, xn+1)],

by triangle inequality, and this leads to

d(xn+1, xn) ≤ δd(xn, xn−1), (3.9)

where δ =
a

1− a
.

Case II. xn ∈ P , xn+1 ∈ Q.
In this case we have xn = yn = Txn−1, but xn+1 6= yn+1 = Txn and

d(xn, xn+1) + d(xn+1, Txn) = d(xn, Txn).

Thus d(xn+1, Txn) 6= 0 and hence

d(xn, xn+1) = d(xn, Txn)− d(xn+1, Txn) < d(xn, Txn). (3.10)
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Now, by a similar argument to that in Case I, (xn, xn−1) ∈ E(GK) and hence
by the contraction condition (3.5) we get

d(xn, Txn) = d(Txn−1, Txn) ≤ a[d(xn−1, Txn) + d(xn, Txn−1)]

= ad(xn−1, Txn) ≤ a[d(xn−1, xn) + d(xn, Txn)].

Thus
d(xn, Txn) ≤ δd(xn, xn−1).

and therefore, by means of 3.10,

d(xn, xn+1) < d(xn, Txn) ≤ δd(xn, xn−1).

which is exactly inequality (3.9) obtained in Case I.

Case III. xn ∈ Q, xn+1 ∈ P . In this case we have xn+1 = Txn, xn 6=
yn = Txn−1 and

d(xn−1, xn) + d(xn, Txn−1) = d(xn−1, Txn−1). (3.11)

Hence, by property (M) we get

d(xn, xn+1) = d(xn, Txn) ≤ d(xn−1, Txn−1) = d(Txn−2, Txn−1).

(since xn ∈ Q =⇒ xn−1 ∈ P ). Thus,

d(xn, xn+1) ≤ d(Txn−2, Txn−1).

Since, by (3.8), (yn−1, yn) ∈ E(G), by the contraction condition (3.5) with
x := xn−2 and y := xn−1 we obtain

d(Txn−2, Txn−1) ≤ a[d(xn−2, Txn−1) + d(xn−1, Txn−2)]

= ad(xn−2, xn),

since xn−1 = Txn−2. Therefore, by triangle inequality,

d(xn, xn+1) ≤ ad(xn−2, xn) ≤ a[d(xn−2, xn−1) + d(xn−1, xn)]

= 2a · d(xn−2, xn−1) + d(xn−1, xn)

2
≤ 2amax{d(xn−2, xn−1), d(xn−1, xn)}.

Since max{2a, a
1−a} = a

1−a := δ, we finally obtain

d(xn, xn+1) ≤ δd(xn−2, xn−1). (3.12)
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Now, by summaryzing all three cases and using (3.9) and (3.12), it follows
that the sequence {d(xn, xn−1)} satisfies the inequality

d(xn, xn+1) ≤ δmax{d(xn−2, xn−1), d(xn−1, xn)}, (3.13)

for all n ≥ 2. Now, by induction for n ≥ 2, from (3.13) one obtains

d(xn, xn+1) ≤ δ[n/2] max{d(x0, x1), d(x1, x2)}, (3.14)

where [n/2] denotes the greatest integer not exceeding n/2.
Further, for m > n > N ,

d(xn, xm) ≤
∞∑

i=N

d(xi, xi−1) ≤ 2
δ[N/2]

1− δ
max{d(x0, x1), d(x1, x2)}, (3.15)

which shows that {xn} is a Cauchy sequence.
Since {xn} ⊂ K and K is closed, {xn} converges to some point x∗ in K,

i.e.,
x∗ = lim

n→∞
xn. (3.16)

By property (L), there exists a subsequence {xkn
}∞n=1 of {xn}∞n=1 satisfying

(xkn
, x∗) ∈ E(G), ∀n ∈ N.

and hence, by the contraction condition (3.5),

d(xkn+1, Tx
∗) = d(Txkn

, Tx∗) ≤ a[d(xkn
, Tx∗) + d(x∗, Txkn

]

≤ a[d(xkn
, Txkn

) + d(Txkn
, Tx∗) + d(x∗, xkn+1].

= a[d(xkn , Txkn) + d(xkn+1, Tx
∗) + d(x∗, xkn+1].

This yields,

d(xkn+1, Tx
∗) ≤ δd(xkn

, Txkn
) + ad(x∗, xkn+1],

which, by means of (3.15) and by letting n → ∞ shows that the sequence
{xkn}∞n=1 converges to Tx∗ as n → ∞. By (3.16) and the uniqueness of the
limit in a metric space, we infer that x∗ = Tx∗, i.e., x∗ is a fixed point of T .

The uniqueness of x∗ immediately follows by the contraction condition
(3.5), which implies the uniqueness condition

d(Tx, Ty) ≤ δd(x, y) + 2δd(x, Tx), for all (x, y) ∈ E(GK).

In the end, by using the estimate (3.14) and triangle inequality we obtain for
any n, p ∈ N∗

d(xn, xn+p) ≤ δ[n/2] 1− δ
[(p+1)/2]

1− δ
max{d(x0, x1), d(x1, x2)},

from which, by letting p→∞, we get exactly the error estimate (3.7).
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A weaker form of Theorem 2 can be stated as follows.

Theorem 3. Let (X, d,G) be a Banach space endowed with a simple directed
and weakly connected graph G. Let K be a nonempty closed subset of X and
T : K → X be a G-Chatterjea contraction on K.

If KT := {x ∈ ∂K : (x, Tx) ∈ E(G)} 6= ∅, T is orbitally G-continuous
and T satisfies Rothe’s boundary condition

T (∂K) ⊂ K,

then the conclusion of Theorem 2 remains valid.

4 Conclusions and further study

The Chatterjea-type contractive condition (1.7) (or (3.5) in the non self map-
ping case) is independent of the Banach type contraction condition (1.3) con-
sidered in [20], and of Kannan-type contractive condition (1.6), as shown by
the next examples.

Example 3. ([53], Example 1.3.1) Let X = [0, 1] with the usual norm and
T : [0, 1]→ [0, 1] be defined by

T (x) =


2

5
, x ∈

[
0,

2

3

)
1

5
, x ∈

[
2

3
, 1

]
.

Then T is a discontinuous Kannan operator with constant a =
3

7
, it is neither

a Banach contraction nor a Chatterjea contraction.

Example 4. ([53], Example 1.3.4) Let X = [0, 1] with the usual norm and
f : [0, 1]→ [0, 1] be defined by

f(x) =


1

5
, x ∈

[
0,

8

15

)
1

3
, x ∈

[
8

15
, 1

]
.

Then f is a Chatterjea operator with constant a =
2

5
but f is neither a Banach

contraction nor a Kannan contraction (see Example 1.3.7 in [53] for the proof).
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This shows that Theorems 2 and 3 established in the present paper are
important and very general alternative fixed point theorems for non self map-
pings in Banach spaces endowed with a graph. They provide effective gener-
alisations and extensions of similar results in literature and subsume several
important results in the fixed point theory of self and nonself mappings.

Both Theorem 2 and Theorem 3 were established in Banach spaces en-
dowed with a graph for the sake of simplicity of exposition but they can be
transposed in more general settings, like convex metric spaces or CAT (0)
spaces without any major technical difficulty.

By working on Banach spaces endowed with a graph, our results are
valid not only for mappings that satisfy the contraction condition (3.5) for
all pairs (x, y) of the space X × X, but only for the pairs (x, y) which are
vertices of a simple directed and weakly connected graph G = (X,E(G)),
with E(G) ⊂ X ×X.

Amongst the most important particular cases of Theorem 2 and Theorem
3, we mention in the following just the following ones:

1. If G is the graph G0 in Example 1, then by Theorem 2 we obtain
an extension of Chatterjea fixed point theorem [30] for non self mappings,
restricted here for the reasons mentioned above to Banach spaces instead of
usual complete metric spaces.

2. If K = X, and G is the graph G0 in Example 1, then by Theorem 2
we obtain the original Chatterjea fixed point theorem [30] for self mappings,
restricted here for the reasons mentioned above to Banach spaces instead of
usual complete metric spaces.

For further developments, we have in view considering nonself single-
valued as well as multi-valued mappings by starting from the corresponding
case of self mappings, see [1]-[4],[5], [21], [22], [25], [32], [33], [38], [39], [40],
[43], [44], [50]-[59], [71]-[73], [74]-[77] etc.

Acknowledgements

The second author’s research was done during his visit to Department of
Mathematics and Statistics, King Fahd University of Petroleum and Min-
erals, Dhahran, Saudi Arabia, in the period April-May 2016. He gratefully
thanks Dr. Al-Homidan, dean of College of Sciences, and Dr. Al-Attas, the
Chairman of the Department of Mathematics and Statistics, for the excellent
conditions they offered during the visit. The second author would also like to
acknowledge the support provided by the Deanship of Scientific Research at
King Fahd University of Petroleum and Minerals for funding this work through
the projects IN151014 and IN151017.



APPROXIMATING FIXED POINTS OF NONSELF CONTRACTIVE TYPE 38

References
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Department of Statistics, Analysis, Forecast and Mathematics,
Faculty of Economics and Bussiness Administration,
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